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Abstract

As part of industrial quality control in the leather industry, it is 
important to identify the abnormal features in wet-blue leather 
samples. Manual inspection of leather samples is the current 
norm in industrial settings. To comply with the current industrial 
standards that advocate large-scale automation, visual inspection 
based leather processing is imperative. Visual inspection of irregular 
surfaces is a challenging problem as the characteristics of the 
abnormalities can take a variety of shape and color variations. The 
aim of this work is to automatically categorize leather images into 
normal or abnormal by visual analysis of the surfaces. To achieve 
this aim, a deep learning based approach is devised that learns to 
recognize regular and irregular leather surfaces and categorize 
leather images on its basis. To this end, we propose an ensemble 
of multiple convolutional neural networks for classifying leather 
images. The proposed ensemble network exhibited competitive 
performance obtaining 92.68% test accuracy on our own curated 
leather images dataset.

Introduction

In the production of high quality wet-blue leather, automation of 
defect inspection and classification is highly desirable. Inspection 
is carried out at different stages of production. It is clear that more 
leather abnormalities can be prevented by earlier identification. To 
date, the industry’s inspection of abnormal leather surfaces relies 
primarily on human vision. However, because of human error, 
manual inspection is strongly subjective, which could eventually 
lead to low productivity and an undesired false detection rate. With 
the developments of artificial intelligence (AI) in recent years, its 
practical applications in visual-based detection in many industrial 
sectors have been successfully demonstrated.1-3 Also, with the rise of 
industry standard 4.0,4 AI based visual inspection of leather samples 
is imperative. 

Visual inspection based leather categorization is a challenging 
problem as the appearance of the irregularities is highly varying in 
nature. Hides and skin defects are usually known as antemortem 
(before animal death), post-mortem (fault after animal death) and 

as defects of processing. Brand marks, pox marks, tick marks, 
insect bites, bruises, growth marks, scratches, etc. are potential 
defects that arise during the animals’ lifespan. These defects are 
distinguished by a range of shapes, colors, and textures. The data 
shift problem on the test set and similar visual appearance of 
normal and irregular leather surfaces further make the problem 
multifaceted. 

AI deals with developing theory, methods and systems that can 
enable machines to mimic human intelligence. Neural networks are 
a small step in this direction that attempt to mimic the human brain 
and its functionality. The area of artificial intelligence which deals 
with imitating the behaviour of human vision is image processing. 
While other AI techniques have also played their roles, neural 
networks have come a long way in replicating simple human vision 
tasks including handwritten digit recognition, number plate reading 
and visual recognition.5 Neural networks have demonstrated their 
efficacy on a wide range of image processing applications including 
image enhancement, compression, image segmentation, object 
recognition and image understanding.5 

In the past non neural network based AI methods have been 
investigated for visual inspection of leather.6,7 While they achieve 
considerable performance, the current state of methods is far from 
reaching a generic solution that can meet the needs of industrial 
scale visual inspection. Moreover, convolutional neural networks 
(CNN) based methods (that are a special type of neural networks) 
have not been explored to their fullest potential for visual inspection 
of leather. A valid reason for this is the lack of data sets which is a 
major impediment to progress in this area. The previous studies do 
not make their data available for comparative evaluation. 

The aim of this paper is to design a system capable of automatic 
classification of leather images as normal or flawed. The 
proposed system can be easily adapted to automated leather 
hide categorization by leveraging its robust image-by-image 
classification capability. Such a system can act as a support system 
for the experts and aid in bias free, rapid categorization of leather 
samples. The major objectives to achieve the aim of the paper are 
as follows:
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• � systematic ensembling of state-of-the-art CNNs and their 
adaptation for leather image categorization,

• � comparative evaluation of the proposed method with 
previous stat-of-the-art machine and deep learning based 
approaches in terms of widely accepted classification 
performance metrics,

• � introduce a high resolution, wet-blue leather image dataset 
for benchmark comparative evaluation of methods. 

In this work, we propose an ensemble convolutional neural network 
that is designed systemically thorugh empirical evaluations for 
robust leather sample categorization. We also introduce a new high-
resolution wet-blue leather image dataset consisting of normal and 
defective leather samples. The images are acquired in a controlled 
environment with a digital camera device. The major challenges 
in image acquisition using a digital camera device include proper 
illumination conditions, proper distance from the leather surface 
and managing the field of view and ensuring high resolution of 
images. Other important factors are stability of the acquisition 
device to exclude the possibility of image artefacts. The dataset 
introduced in this work was curated by taking into account all the 
above-mentioned issues. 

The major contributions of the proposed work are: 

• � a new ensemble method for robust leather sample 
classification, 

• � a thorough comparative evaluation of the proposed 
method with nine benchmark machine and deep learning 
based methods,

• � introduction of a new high-resolution leather images 
dataset for stimulating research in the field. 

As explained earlier, wet-blue leather has multiple types of defects, 
however, in this work we are only interested in classifying leather 
images as normal or abnormal. In this paper, we will use the terms 
defects and irregular features interchangeably for abnormal leather 
surface regions (i.e., cuts in our case). The visual appearance of these 
abnormal image regions is characterized by a wide variety of shapes, 
textures, scales, spatial locations, and color variations.

The rest of the paper is organized as follows. Section 2 contains a 
literature review on leather defect classification. Section 3 describes 
the proposed method. Section 4 explains experimental design. 
In section 5 all results are presented. Class Activation Maps are 
explained in section 6. Finally, we conclude our work in section 7.

Literature Review

In this section, we review several machine learning based methods 
proposed in the literature for leather image classification. To identify 
abnormal features, Chishti et al. proposed LM-trained multi-layer 

perceptron neural network structure optimization algorithms 
have been developed. The suggested results of the method have 
better accuracy than existing LM-based classifiers without neural 
structure optimization. Dataset images for wet blue leather and 
rawhides of the 11 most common features are provided with the 
classifier results. The algorithm classifies wet blue leather defects 
with 98.73% accuracy, 97.85% precision, and 94.14% sensitivity.6  
Deng et al. proposed a method to classify surface abnormalities on 
the whole piece of the leather automatically and objectively, based 
on a parameter optimized residual network is proposed. They used 
ResNet-50 and optimized two of the network parameters, the size of 
the data set and the size of the sliding patch window, are optimized. 
The size of the data set is obtained by achieving the tradeoffs 
between the evaluated workload and the classification accuracy. 
The classification accuracy of the applied reaches 94.6%.7 Recently, 
Aslam et al. suggested a method to classify good leather and defected 
leather images. For the classification task, an ensemble architecture 
EfficientNet-B3+ResNext-101 is used. The proposed algorithm was 
able to achieve an AUC of 81.9%.8

The Proposed Method 

In this work, we investigated deep learning architectures for 
classification of abnormal surface features in wet-blue leather. Images 
were acquired using a Nikon Coolpix P300 camera. Training images 
were employed to augment new image variations to improve the 
generalization of classifiers on unseen samples. The classifiers were 
trained using augmented data and train and validation accuracies 
were computed. The best weights of the trained models were stored 
for the inference stage. In the inference stage, the test data and 
the chosen trained model was employed to compute the model 
predictions, which were then utilized for performance evaluation of 
the model at the test stage.

Data Augmentation
In order to train the network with different variations of the input 
images by artificially generating new images for the training, the 
data augmentation module was added to our workflow. In order to 
minimise network overfitting and enhance model generalisation, 
the data augmentation effect has been practically demonstrated. 

Horizontal flipping, vertical flipping, rotation using a random angle 
in the range 30 to 150 and a random zoom factor in the range 0.1 
to 0.8 were the chosen augmentation methods in our experiments. 
With a probability of 0.5, all the transformations were applied. After 
the data augmentation process, a total of 1557 images were collected. 
The training data was split randomly into training, validation 
and test sets with a 60:20:20 ratio. Consequently, for the training 
collection, 1040 images were used, while the remainder were split 
into the validation and test sets. The number of defective and non-
defected pictures of leather were also held equal, rendering the issue 
of classification a balanced one. Apart from data augmentation 
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strategies, no particular pre-processing function was applied to the 
original images. 

Convolutional Neural Network Ensembles
Ensemble approaches combine several classifiers, and it has been 
found that it is possible to obtain greater precision results than a 
single classifier. For an ensemble, well-known approaches include 
boosting, bagging and stacking. Stacking combines the outputs of 
a number of base learners and allows another algorithm , called 
the meta-learner, to make the final predictions. A super-learner is 
another technique which calculates the final predictions by finding 
the optimal weights of the base learners by minimising a loss function 
based on the cross-validated performance of the learners. Majority 
voting is an ensemble method that counts all the predicted labels 
of the base learners, and records the label with the highest number 
of votes as the final prediction. Another strategy is to measure the 
optimum weights of individual simple learners. Average voting that 
produces labels afterwards by calculating the average probabilities 
of the softmax class or predicted labels for all the base learners is the 
most common ensemble technique used in neural networks.

In this work, we experimented with various combinations of 
standard state-of-the-art networks, including VGG-16, ResNet-50, 
Inception-V3 and Inception-ResNet-V2, in order to find the ideal 
collection for classifying leather features. The average voting-based 
ensemble of Inception-V3+ResNet50 was selected as the proposed 
architecture in this study due to its superior performance and 
confidence in predictions. The architectural level diagram of the 
proposed ensemble network is shown in Figure 1. 

Ensemble techniques have proven in previous works to be the tool 
of choice in both related and unrelated image domains. Ensemble 
approaches combine several classifiers, and it has been found that it 
is possible to obtain greater precision results than a single classifier. 
We put together state-of-the-art designs such as Inception-V3, VGG-
16, ResNet-50 and Inception-ResNet-V2. Since no representative 
ensemble methods are discussed for leather image classification 

in literature, ensemble combinations of two network architectures 
are exhausted and combinations are chosen in this work that 
stand out in terms of learned representations. For related domain 
classification tasks, similar ensemble networks have demonstrated 
state-of-the-art efficiency. Neural networks are nonlinear and have 
a high variance, ensemble learning combines the predictions from 
various architectures to reduce variance of prediction.

Figure 1, consists of two different convolutional neural network 
architectures, i.e. ResNet-50 and Inception-V3. Input image is fed 
separately to both the models. Both networks have a Global Average 
Pooling (GAP) layer as their outputs (for details about GAP, please 
refer to Section 3.4). In order to calculate the final prediction, the 
outputs of the networks are fed into the probabilistic averaging layer. 
The output of the probabilistic averaging layer is passed through a 
softmax layer that categorizes the input image as normal or defective.  

Setting Up the CNN and Training Process
Our model was implemented using Keras deep learning framework 
2.1.4. Stochastic Gradient Descent (SGD) and the ADAM optimizers 
were investigated.9,10 The momentum rate equal to 0.9 for SGD and 
set the learning rate to 0.001. We adopted a dynamic learning rate 
which was divided by 1×10-3 every epoch with an initial value of 
1×10-2 for Inception V3 experiments. The training batch size used 
for Inception-V3+ResNet-50 was 4. We used a binary cross entropy 
as loss function denoted by (LCE because there are only two classes.11 
The subscript in LCE stands for cross entropy. Our loss function takes 
the following form 

(1)

where y is the label, ŷ denotes the predicted probability and log is the 
natural logarithm.

All images in the dataset were re-sized to 500×375 pixels before 
training the CNN model to preserve the information in the image 
and reduce the computational cost of processing. Hence, the input 

Figure 1. Block level diagram of the proposed ensemble architecture.

LCE (y, ŷ) = –     Σ (yilog (ŷi) + (1 – y)log(1 – ŷi))
1
N

N

i=0
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shape of the CNN is 500×375×3, where three represents the number 
of RGB channels in the image. We employed the pre-trained weights 
on ImageNet for the convolutional blocks as an initialization for the 
network parameters, which resulted in a faster convergence.12 We 
also added Global Average Pooling layer and replaced dense layer 
and flatten layer. The elimination of all these trainable parameters 
also reduces the tendency of over-fitting, which needs to be managed 
in fully connected layers by the use of dropout.

Global Average Pooling
One of the most important requirements for visual inspection based 
leather defect categorization is the large size of the input images. 
Large image sizes are essential as irregular features can occur at 
very small scales and equally contribute to the defectiveness of the 
leather sample. Therefore, the CNN architectures designed for this 
task must be able to cope with large image sizes. This large image 
size support is not very common in state-of-the-art CNNs reported 
in literature for classification tasks. It turns out that large image sizes 
can only be supported by models that have a relatively lower number 
of parameters. One such recent state-of-the-art architecture, which 
has proven to be highly useful at the large scale visual recognition 
challenge and has an architecture targeted to mobile vision is the 
Inception-V3 architecture.13 The Inception-V3 is a well-known 
state-of-the-art method for multi-class classification with a low 
computational cost and only consists of 25 million parameters.13 The 
ResNet-50 architecture can be carefully optimized to minimize the 
number of parameters without compromising its established state-
of-the-art classification performance in related tasks.

Despite its low computational cost, the proposed Inception-
V3+ResNet-50 architecture could not be trained in an end-to-end 
fashion on leather images greater than 500×375×3 using a multi-
gpu hardware resource. To counter this issue, we considered various 
global pooling layers instead of the fully connected layer to reduce 
the number of parameters and shed the computational load. Table 
1 presents a comparison of model parameters, where the original 
parameters depict the total parameters (with the fully connected 
layer), while the parameters with GAP represents the total number 
of model parameters when the GAP layer is employed. If we look 
at Inception-V3 parameters, the number of parameters are reduced 
by about 1 million. Also, in the case of Inception-ResNet-V2, the 

difference is about 1 million as well. In ResNet-50 the difference is 
2 Million parameters, which is slightly more than Inception-V3 and 
Inception-ResNet-V2.

Four well-known pooling strategies from past works including 
simpler schemes such as global max pooling,14 global average 
pooling,15 and more complex strategies including log sum exponential 
(LSE) pooling16 and max-min pooling17 were considered. Considering 
that VC represents a map from the final convolutional volume of 
the architecture, we can define all the pooling strategies. The global 
max pooling strategy denoted by ycM as defined in,14 is given as:

(2)

Where C represents the number of scores in map and c is the 
maximum score in that map. The maximum location in the map 
hypothetically provides the location of the object or the abnormal 
region in our case.

Similarly, global average pooling (denoted by ycA), which is another 
simple pooling scheme, can be defined according to15 as 

(3)

Where N is the total number of samples, VC represents a map from 
the final convolutional volume of the architecture. It advocates that 
the location of the region of interest is the global average of the maps 
instead of the maximum as in global max pooling.

Given a hyperparameter β, the LSE pooling strategy16 (denoted by 
ycLSE) can be expressed as 

(4)

where β provides a trade-off between choosing the maximum 
versus the average values for pooling, log is the natural log and 
exp represents the exponential function. In some sense, the LSE 
pooling strategy provides as trade-off between the global average 
and max pooling strategies to locate the object of interest. Finally, 
the min-max pooling strategy based on the k highest (Stop (Vc)) and 
the m lowest (Slow (Vc)) scoring regions is expressed mathematically 
according to17 as 

(5)

(6)

(7)

where h is a vector responsible for the selection of the candidates. The 
main idea of the max-min pooling strategy is that multiple regions 

Table 1

Comparison of models parameters with and without  
the GAP layer.

Serial # Model
Original 

Parameters
Parameters with 

GAP

1 Inception-V3 23 Million 21.8 Million

2 Inception-ResNet-V2 55 Million 54 Million

3 ResNet-50 25 Million 23 Million

ycM = maxi,jVC
i j∀c∈C

ycA =     Σ
i,j 

VC
i j

1
N

yc Max – Min = Stop (Vc) + Slow (Vc)

Slow (Vc) = min hΣ
i,j 

 hijVC
i j  , s.t.Σ

i,j 
 hij = m

Stop (Vc) = max hΣ
i,j 

 hijVC
i j  , s.t.Σ

i,j 
 hij = k

ycLSE =    log(    Σ
i,j 

 (exp(βVC
i j)

1
β

1
N
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that hypothesize the location of the object of interest are combined 
to form the final prediction. 

Two important factors that need to be considered when selecting 
a pooling strategy are the accuracy of the network and the 
computational overhead of the scheme. In our experiments, all 
four pooling strategies obtained relatively similar results in terms 
of accuracy, therefore, we considered computational complexity 
of the operations to select a particular pooling scheme. Table II, 
presents the computational complexity of the pooling strategies 
considered in this work. As the more complex LSE and Max-
min pooling schemes have relatively much higher computational 
complexity with almost similar accuracy as compared with the 
other two schemes, the simple max and average pooling schemers 
were considered in this work. Owing to its higher accuracy in our 
experiments and lower computational complexity according to 

Table II, global average pooling (GAP) ycA was considered to be the 
preferred choice. The overall complexity of the max-min pooling 
strategy is O(2n2), however, the parameter h needs optimization, 
which adds a term O(lp) for each optimization iteration for p number 
of derivatives.

Experimental Design

Dataset
The original dataset consists of RGB wet-blue leather images with a 
resolution of 4000×3000 in JPEG format. The images were collected 
by Nikon Coolpix P300 camera with a 12MP AF sensor. A total of 
60 images including 30 normal samples and 30 defected samples 
were curated to form the original dataset. Equal representation of 
normal and defective samples was collected to balance the classes. 
The original images were augmented as explained in Section 3.2 to 
form a total of 1557 images, out of which, 1040 images were used for 
training and the rest constituted the validation and test sets.

Figure 2 presents representative examples of normal and defective 
images along with magnified regions of abnormal and normal leather 
surfaces. Abnormal or irregular leather surfaces are distinguishable 
from a normal surface based on the color, texture and shape of the 
defects characterizing them. For instance, the abnormal surfaces 
shown with red boxes in Figure 2 contain cuts and white spots, 
which are highly varying in appearance due to their color, texture 
and shapes. 

Table II

Computational complexity of pooling strategies 

Pooling Strategy Proposed by Big-O complexity

Global max pooling ycM Oquab et al. 14 O (n2) t

Global average pooling ycA Zhou et al. 15 O (n)

LSE pooling ycLSE Pinheiro et al. 16 O (log(O (k(O(n)))))

Max-min pooling ycMax – Min Durand et al. 17 O (n2)––O(lp)b

Figure 2. Representative examples of defective and normal images. Image patches on top of the images 
show abnormal (red boxes) and normal (green boxes) leather surfaces, respectively.  
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Performance Measures
When performing classification predictions, four types of outcomes 
could occur:

• � True Positive (TP): When a defected leather sample is 
predicted as defected by the model,

• � True Negative (TN): When a leather sample without any 
defects is predicted as non-defected by the model,

• � False Negative (FN): When defects were present in leather 
but the model predicted it as non-defective; it is also called 
as a Type 2 error,

• � False Positive (FP): When the leather sample was non-
defective but the model predicted it as defective; it is also 
known as a Type 1 error.

Several different performance measures based on the confusion 
matrix are employed to assess the classification performance of the 
methods. T﻿﻿hese measures include the classification accuracy that 
measures the percentage of correct predictions 

(8)

As per equation (8), it is computed by dividing the number of correct 
predictions by the number of total predictions. The accuracy measure 
computed for the training images is termed as the train accuracy. 
Accuracy for the validation images is the validation accuracy and 
the accuracy computed on the test image set is known as the test 
accuracy. 

The precision of the classifier quantifies what proportion of positive 
predictions were deemed correct and is given as 

(9)

A related measure is recall which measures the proportion of actual 
positives which were identified correctly 

(10)

The F1-score is the average of the precision and recall 

(11)

A Receiver Operating Characteristic ( ROC) curve is a fundamental 
method to evaluate the classifier’s test assessment for various 
classification thresholds. A plot between the sensitivity (true-
positive rate) as a function of the specificity (false-positive rate) is 
shown in this curve for different parameter threshold values. Each 
point on the graph in the ROC plot is a pair of FPR and TPR values 

for a particular threshold point. The AUC therefore reflects how a 
classifier distinguishes between flawed and non-defect leather.

Benchmark Deep Learning Methods
To this end, we employ ResNet, inception-V3 and Inception-
ResNet-V2 as benchmark deep learning based methods for 
comparative evaluation of the proposed method. The VGG16 

 method is employed as the baseline method for comparison. ResNet 
has several architectures with different number of layers.18 For 
this work, we employed ResNet-50 because for the given amount 
of data, it gave the best performance. We employed Inception-V3 
as it has been used by researchers before as well on related tasks. 
Inception-ResNet-V2 was implemented as given by C. Szegedy et al.19 
Hyperparameter values used in these algorithms are given in Table III.

State-of-the-art Methods for Comparison
There are only a handful of machine learning approaches reported 
in literature for wet-blue leather classification. Also, these learning 
approaches do not publicly share their source code or executable 
programs that can be used for reproducing their results for 
comparative evaluation. Therefore, in this work, we compare the 
performance of the proposed method with contemporary interest 
point based machine learning techniques and benchmark deep 
learning methods discussed above. The main motivation for choosing 
these techniques is their widespread use in literature for similar 
defect classification problems. We briefly discuss the use of selected 
techniques in relevant defect detection problems.

Hassanin et al. applied SURF features to classify defects on a 
printed circuit board (PCB).20 Zheng D. used Harris corner features 
for classification of patterns in fabric design.21 Shang et. al. used 
inception-v3 with transfer learning to classify and recognize rail 
surface defects.22 Wen et. al. used ResNet-50 with transfer learning 
for fault diagnosis.23 Shahin et. al. has applied ensemble strategy on 
skin lesion classification using Inception-v3 and ResNet-50 as an 
ensemble algorithm.24 

Therefore, in this work, we compare the classification performance 
of the proposed CNN based ensemble with the state-of-the-art 
feature descriptors including SURF by Bay et al.,20 FAST by Rosten 
and Drummond21 and BRISK points proposed by Leutenegger 
et al.22 employed in a classification framework. We also employ 
the well-known Harris corner points algorithm by Harris and 
Stephens23 as a baseline descriptor for comparison purpose. These 
descriptors are employed in a well-known bag-of-keypoints based 
classification framework24 (with multiclass SVM as the classifier) for 
a fair comparison. In addition, we employ ResNet, inception-V3 and 
Inception-ResNet-V2 as benchmark deep learning based methods 
and VGG-16 as a baseline deep learning method. 

TP + TN
TP + FP + TN + FN

Accuracy =

Precision × Recall
Precision + Recall

F1 – score = 2

TP
TP + FP

Precision =

TP
TP + FN

Recall =
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Results

All the algorithms were validated on 328 images during the training 
process. Before giving the images as an input to the model, all these 
images were pre-processed. The hyper-parameters used for training 
are given in Table III. The classification results of the proposed method 
are presented in Figure 3. It can be observed from the confusion 
matrices that the proposed Inception-V3+ResNet-50 architecture 
obtained a high percentage of correct predictions with a high 
precision and has the ability to robustly identify almost all irregular 
features in general. This is also confirmed by the ROC curves and 
the high AUC values as evident in Figure 3. The high AUC values 
also exhibit the ability of the proposed method to adapt to various 
applications where different threshold values may be required.

Comparison with Descriptors Based Machine Learning Methods
In this section, we evaluate the efficacy of the proposed method 
in comparison to the state-of-the-art feature descriptors based 
learning methods (discussed in Section 4.4) in terms of classification 
accuracy, precision, recall, F1-score and AUC. Table IV compares 
the performance of the proposed methods with the state-of-the-
art methods in terms of classification accuracy on the training, 
validation and test sets. The proposed Inception-V3+ResNet-50 
method outperforms all other methods in terms of training accuracy 
as well as its generalization ability on unseen images. The state-of-
the-art methods obtained high training accuracy but in general 
failed to generalize well on unseen examples in the validation and 
test sets. The SURF20 and the FAST21 methods performed at par on 
test data with better generalization ability as compared with the 
BRISK22 and the Harris17 descriptors. It is evident from these results 
that the proposed CNN based method is more suitable as compared 
with the state-of-the-art machine learning methods due to its robust 
prediction ability. 

It can be observed from Table V that the proposed Inception-
V3+ResNet-50 method outperforms all other compared methods 
in terms of precision, recall, F1-score and AUC. The SURF method 

Table III

Hyper-parameter values used in algorithms

Name Hyper-Parameter Value 
Global average pooling Replaced fully connected layer 

Output layer Activation: Softmax 

Number of epochs 20 

Batch size 4, 12 

Optimization method SGD & Adam (Learning rate = 0.001) 

Table IV

Comparison with the state-of-the-art methods  
in terms of classification accuracy. T Acc stands for  
Training Accuracy, Val Acc for Validation Accuracy  

and Test Acc for Test Accuracy.

Serial  
# Model

Training  
Acc (%)

Validation 
Acc (%)

Test Acc  
(%)

1 SURF1 94.44 71.67 83.33

2 FAST16 81.67 81.67 73.33

3 BRISK9 94.44 60.00 75.00

4 Harris6 95.00 63.33 76.67

5 InceptionV3+ResNet-50 97.64 96.29 92.68

Figure 3. Confusion matrices and ROC curves for the proposed method.  
(a) confusion matrix (b) ROC curve

Table V

Comparison of methods in terms of precision,  
recall, F1-score and AUC.

Serial  
# Model Precision Recall F1-score AUC

1 SURF1 0.86 0.80 0.83 0.90

2 FAST16 0.68 0.87 0.76 0.66

3 BRISK9 0.80 0.67 0.73 0.78

4 Harris6 0.83 0.67 0.74 0.76

5 InceptionV3+ResNet-50 0.93 0.93 0.93 0.927

(a)

(b)
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generalizes well on the test data as quantified by its AUC which is in 
agreement with its accuracy. Despite competitive accuracy, the FAST  
method did not generalize well in terms of AUC. This suggests that 
although the FAST method can obtain correct predictions, it may 
not be much more reliable in different applications, where different 
thresholds are to be set for the classifier. The results of the Harris  
and the BRISK features are also in line with their accuracy scores.

Comparison with Deep Learning Based Methods
To harness the true performance of the CNN based methods, we 
experimented with multiple optimization functions and found that 
the Adam and the Stochastic Gradient Descent (SGD) optimizers 
are best suited for our problem. We also experimented with transfer 
learning (with ImageNet12 weights) in comparison to training from 
scratch. To aid training from scratch batch normalization was also 
employed. Some important conclusions drawn from the results 
in Table V include: 1) The Adam optimizer was found to be the 
preferred choice for all the networks, 2) Transfer learning from 
ImageNet weights was found to be more useful in comparison to 
training from scratch, 3) Batch normalization could not help in 
improving the results when training the networks from scratch.

Two key observations from our experiments in Table VI are that: 
1) knowledge learned from ImageNet transfers better to the task at 
hand as compared with training from scratch. 2) Inception-V3 and 
ResNet-50 stand out as compared with other architectures in terms 
of their performance on leather defect classification. Therefore, 
when performing our ensembling experiments, we used pre-
trained architectures on ImageNet. Also, we select the Inception-
V3+ResNet-50 as our proposed ensemble architecture in comparison 
and compare it with other ensemble approaches. The proposed 
Inception-V3+ResNet-50 architecture outperformed all other CNN 
variants in terms of all three accuracy measures when trained using 
the SGD optimizer in a transfer learning setting. It is also evident 
that the proposed architecture could be trained with the largest 
batch size owing to its reduced parameters and compactness. The 
proposed architecture takes only 1.3 milli seconds to classify an image 
of resolution 500×375. Surprisingly, VGG-1625 could not perform 
well on this task. This result suggests that only sixteen layers of the 
VGG-16 network are shallow to learn effective representations for the 
leather classification task. ResNet-50 learned effective representations 
and exhibited the second best performance in terms of the accuracy 
measures. Interestingly, it performed slightly better than the Inception-
ResNet-V2 architecture in terms of validation and test accuracies.

Table VI

Comparison of models in terms of accuracy, transfer learning, batch normalization,  
batch size using Global Average Pooling and image size of 500×375.

Serial 
# Image Size Model Name

Train 
Accuracy (%)

Validation 
Accuracy (%)

Test 
Accuracy (%) Optimizer GAP

Transfer 
Learning Scratch

Batch  
Normalization

Batch 
Size AUC

1 500×375 VGG-16 62.5 0 50 SGD     4 50

2 500×375 VGG-16 63.08 0 50 Adam     4 50

3 500×375 VGG-16 67.54 0 50 Adam     4 50

4 500×375 ResNet-50 99.33 97.31 89.76 Adam     4 89.8

5 500×375 ResNet-50 98.08 99.27 89.47 SGD     4 89.5

6 500×375 ResNet-50 100 94.65 53.54 Adam     4 53.5

7 500×375 ResNet-50 100 99.63 90.85 SGD     4 90.7

8 500×375 Inception-v3 95.48 94.23 65.74 SGD     4 65.7

9 500×375 Inception-v3 95.58 98.85 90.15 SGD     12 90.1

10 500×375 Inception-v3 90.19 40.38 33.85 Adam     12 33.9

11 500×375 Inception-v3 99.04 97.31 74.4 Adam     12 74.4

12 500×375 Inception-
ResNet-V2 97.88 49.23 24.8 Adam     12 24.9

13 500×375 Inception-
ResNet-V2 98.56 99.61 74.8 SGD     12 74.9

14 500×375 Inception-
ResNet-V2 99.9 100 54.72 Adam     4 54.8

15 500×375 Inception-
ResNet-V2 97.5 96.15 76.77 Adam     4 76.8

16 500×375
Inception-

V3+Inception-
ResNet-V2

99.45 94.84 91.52 Adam     4 91.5

17 500×375 Inception-
V3+ResNet-50 97.64 96.29 92.68 SGD     4 92.7
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Class Activations Maps (CAM) 
The important region(s) in images utilized by the CNN to predict the 
class label of an input image can be visualised in several ways, such as 
gradient descent class activation mappings and global average pooling 
class activation mappings, etc. In order to interpret the output decision 
made by any of the CNN architectures investigated in this study, we 
employ class activation mappings to produce heat maps, which show 
regions of high importance that influenced the classification output of 
the method. Figure 4 shows the class activation maps of the proposed 
method in comparison to other deep learning approaches. In Figure 
4, yellow and pink colors are used to represent the regions of high 
importance according to a particular classifier. Ideally, the regions of 
high importance should be abnormal surfaces for correct prediction 
of classes. It is evident from Figure 4 that the proposed method 
considers the abnormal surfaces (defects) to classify the defective 
images. Apart from the proposed method only Inception-V3 is able to 
recognize the abnormal regions to a considerable extent. Otherwise, 
all other compared methods are not able to focus on important regions 
potentially leading to misclassifications. 

Conclusion

Automated visual inspection of leather in an industrial setting 
has gained considerable attention recently. Numerous machine 
learning approaches have been proposed in the past, however, 
convolutional neural networks based approaches are scarce. In this 
work, we propose an ensemble convolutional neural network for 
visual inspection of wet-blue leather. We also present a new dataset 
of high-resolution leather images. Our proposed technique was able 
to outperform more than 10 deep learning and machine learning 
based methods in terms of both test accuracy and AUC score. Our 
model was able to obtain test accuracy of 92.68% and AUC score of 
92.7%. Despite, it’s competitive performance, the proposed method 
would require adaptation for real-time application, which includes 
fine tuning on video data. In the future, an important direction is 
to develop a system that can classify leather data in a real-world 
industrial setting. Another important future direction is to adapt 
the current system to classify multiple defect types. Finally, the 

        

        

        

        

          

        

Figure 4. Class activations maps of ResNet-50, Inception-v3, Inception-ResNet-v2 (Incep-Res-V2), Inception-v3  
& Inception-ResNet-v4 (Ensemble-1), and Inception-v3 and ResNet-50 (Proposed), respectively.

Original Images

ResNet-50
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development of such systems that can characterize various defect 
types in terms of their properties can potentially lead to artificial 
intelligence based automated quality grading of leather samples.
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