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Abstract

As part of industrial quality control in the leather industry, it is 
important to segment features/defects in wet-blue leather samples. 
Manual inspection of leather samples is the current norm in 
industrial settings. To comply with the current industrial standards 
that advocate large-scale automation, visual inspection based leather 
processing is imperative. Visual inspection of wet-blue leather 
features is a challenging problem as the characteristics of these 
features can take on a variety of shapes and colour variations to 
constitute various normal and abnormal surface regions. The aim of 
this work is to automatically segment leather images to detect various 
features/defects along with the background through visual analysis 
of the surfaces. To accomplish this, a deep learning-based technique 
is developed that learns to segment wet-blue leather surface features. 
On our own curated leather images dataset, the proposed ensemble 
network performed well, with an F1-Score of 74 percent.

1 Introduction

The leather industry is one of the most important historic industries. 
The leather is mostly supplied to downstream leather products 
companies, which utilise it as a raw material to make leather shoes, 
handbags, luggage, gloves, belts, and sofas, among other things.1 
Inspectors examine the leather by hand, physically inspecting it and 
marking any defects with chalk. Because manual inspection might 
lead to fatigue and misidentification, the final judgement must be 
double-checked and approved by numerous inspectors. As a result, 
a quick, thorough, and noninvasive leather assessment technique has 
become necessary.1

Despite the fact that current manufacturing procedures fulfill high 
technological standards, quality inspection of leather products has 
room for improvement in terms of effectiveness and efficiency. The 
leather materials have a lot of natural defects/features because they 
are made from animal skin (cowhide, sheepskin, pigskin, and so on). 
On treated leather surfaces, scars, stains, wrinkles, cuts, and colour 
variations are common defects, whereas common normal features 
include creasing and folds that can be of interest due to their frequent 
occurance. As a result, developing a systematic procedure for 
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evaluating leather surface faults/features is crucial for maintaining 
high-quality product consistency.

Artificial intelligence (AI) is the study of theories, methods, and 
systems that will allow machines to mimic human intelligence. 
Neural networks are a first step in this direction, seeking to mimic 
the capabilities of the human brain. Image processing is an area 
of AI that focuses on replicating human vision behaviour. While 
several AI techniques have helped in the replication of simple 
human vision, tasks like handwritten digit identification, number 
plate reading, and visual recognition, neural networks have made 
great progress.2 Neural networks have demonstrated their efficacy 
on a wide range of image processing applications including image 
enhancement, compression, image segmentation, object recognition 
and image understanding.3 Image enhancement, compression, 
image segmentation, object recognition, and image understanding 
are just a few of the applications for neural networks.2

For visual inspections of leather, non-neural network based AI 
approaches have already been investigated.4,5 Despite their excellent 
performance, current technologies are still a long way from providing 
a generic solution for large-scale visual inspection. Furthermore, the 
full potential of CNN-based (a form of neural network) approaches 
for visual leather evaluation has yet to be realised. The unavailability 
of data sets, which is a major hindrance to expansion in this field, is 
one probable reason. The data from previous studies has not been 
made publically available for comparison.

The purpose of this research is to develop an automated defect 
detection system that can segment irregular areas of defects and 
interesting normal features. To analyse the test dataset and design 
a robust architecture, different instance segmentation deep learning 
models are used, such as UNet,6 Segnet,7 and Fully Convolutional 
Network (FCN).8 The major objective, as set out in this paper, is to to 
propose a systematic ensembling of state-of-the-art CNNs and their 
adaptation for leather image segmentation.

In this study, we provide a systemically constructed ensemble 
convolutional neural network for robust leather sample segmentation 
based on empirical assessments. We also put together a new high-
resolution wet-blue leather dataset with two classes containing 
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images with abnormal feature types, whereas the third class 
contains normal leather images with interesting surface features, 
which occur frequently and therefore can not be neglected. So the 
classification problem becomes a generic one that is to learn three 
feature types based on the visual characteristics they present.  The 
images were taken in a controlled environment with a digital camera. 
Appropriate lighting, distance from the leather surface, range of 
vision adjustment, and high-definition photos are all required for 
image capturing with a digital camera equipment. 

The major contributions of the proposed work are: 

•	� a new ensemble method for robust leather defect/feature 
segmentation, 

•	� a thorough comparative evaluation of the proposed method 
with benchmark deep learning based segmentation methods,

•	� introduction of a new high-resolution leather images dataset for 
stimulating research in the field. 

The rest of the paper is organized as follows. Section 2 contains 
a literature review on macihne learning based leather defect 
inspection. Section 3 describes the proposed method. Section 4 
explains the experimental design. In section 5 all the results are 
presented. Class Activation Maps are explained in section 6. Finally, 
we conclude our work in section 7.

2 Literature Review

In this section, we review several machine learning based methods 
proposed in the literature for leather defect segmentation. The task 
of instance segmentation, which demarcates the image’s regions 
of interest, has received minimal attention from the research 
community. Lovergine et al.9 conducted one of the earliest studies 
on defect localization and segmentation. A black and white CCD 

camera was used to detect and determine the defective areas. The 
texture orientation features of the leather are reconstructed using a 
morphological segmentation10,11 approach applied to the obtained 
images. The study has a few qualitative conclusions, but no quantitative 
methodologies or numerical data with which to evaluate the proposed 
methodology. Lanzetta and Tantussi12 provide a laboratory prototype 
for trimming a leather’s external part. Binarization, opening, and 
laplacian mask approaches are used to locate the trimming path 
from the leather sample images in order to find the background and 
troublesome regions. The proposed defect detection system correctly 
detects the majority of flaws on different types of leather. The surface 
polish and colour, on the other hand, are still the most essential 
factors that can influence the inspection’s outcome.

A segmentation approach by Liong et. al.13 was utilised to automatically 
capture the leather image and locate defects. The total amount of image 
data obtained from a single piece of leather was 584, with the tick bite 
defect being mostly included in the little leather patches. To find the 
damaged regions, the spotting approach Mask R-CNN (Regional 
Convolutional Neural Network)14 was employed. When looking at 
training data, the average segmentation accuracy was 91.5 percent.

3 The Proposed Method 

In this paper, we investigate deep learning architectures for defect 
segmentation in wet-blue leather. A Nikon Coolpix P300 camera 
was used to capture the photos. To increase the generalisation 
of segmentation models on unknown data, training images are 
augmented to add new image variants. Augmented data is used to 
train the models. For the inference stage, the best weights of the 
trained models are saved. The test data and the trained model are 
used in the inference phase to generate model predictions, which are 
then used to evaluate the model’s performance in the test stage. The 
generic workflow of the proposed method is shown in Figure 1.

Figure 1. The generic workflow of the proposed method. The training phase is depicted  
on the top and the inference phase is shown on the bottom.
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To ensure that the input and output volumes are always the same, 
padding is utilised on all convolutional layers.

3.2 Ensembling Convolutional Neural Networks
Ensemble approaches combine several segmentation models, and it 
has been found that it is possible to obtain greater precision results 
than a single model. To boost the segmentation performance we 
trained three models on each class and then combined these modes 
to form one segmentation model. Instead of training models on 
complete dataset we trained each model on individual class to make 
it a binary problem instead of multi-class problem. We trained three 
UNet6 and SegNet7 models with ResNet-50 backbone. We fused 
their results in the inference phase for a given test image.

There have been few papers on the application of deep learning for 
handling the problem brought about by a small dataset. For small 
datasets, all these articles use the ensemble technique. When only a 
limited dataset is employed, over-fitting might occur, resulting in 
poor segmentation. As a result, the model’s ability to generalize will 
be limited. To overcome this problem ensemble technique is used 
for small datasets.15-21 In this work, we experimented with various 
combinations of standard state-of-the-art networks, including UNet,6 
Segnet7 and Fully Connected Network(FCN),8 in order to find the 
ideal collection for segmenting leather defects. The training and 
testing workflow diagram of the proposed ensemble network is shown 
in Figure 1. In both related and unrelated image domains, ensemble 
approaches have previously proven to be the most successful tool. In 
ensemble techniques, different segmentation models are used, and it 
has been found that they can achieve higher precision results than a 
single model. To combine cutting-edge designs, UNet,6 SegNet7 and 
the Fully Connected Network (FCN)8 were used. Because there are 
no documented representative ensemble approaches for leather defect 
segmentation in the literature, ensemble combinations of two network 
architectures were investigated, and combinations that stand out 
in terms of learnt representations were chosen for this study. Figure 
1 shows three SegNet models, each of which is trained separately on 
each of the three classes. All of the models are individually trained. 
Following training, all of the models are integrated to form an ensemble 
that can be utilised to solve a multi-class segmentation problem.

4 Experimental Design

4.1 Dataset
Wet blue leather data was collected at the Fitzherbert Science Centre, 
Dairy Farm Road, Manawatu-Wanganui, by the Leather and Shoe 
Research Association of New Zealand (LASRA). Wet blue leather 
refers to unfinished hides that have been dehaired and chrome 
tanned to preserve the leather. Because of the chromium tanning 
chemicals, these skins are commonly referred to as “wet blue”. 
The images were taken with a Nikon Coolpix P300 camera with a 
12MP AF sensor and under ideal lighting conditions. The regions 
containing the features constitute approximately 5-10 % of the entire 

3.1 Data Augmentation
In order to train the network with different variations of the input 
images by artificially generating new images for the training, the 
data augmentation module was added to our workflow. In order to 
minimise network overfitting and enhance model generalisation, 
the data augmentation effect has been practically demonstrated. 

The images are first resized to 512 × 384 before data augmentation. 
The chosen augmentation techniques employed in our experiments 
are horizontal flipping, vertical flipping and rotation using a random 
angle in the range [90, 360]. After the data augmentation process, a 
total of 960 training images were collected. The training data was 
split randomly into training, validation sets with a 80:20 ratio. 

3.2 Architectures
Pixel-wise masks for each region of interest must be produced to denote 
the item discovered during the segmentation process. (FCN)8 is the first 
work to train FCN end-to-end for pixel-wise prediction. The key idea 
of FCN8 is to replace the fully connected layer of typical classification 
neural networks with convolutional layers so that a network output 
can be a two dimensional heat map, rather than class probability 
prediction. FCN8 implements “skip architecture”, meaning that 
shallow layer’s outputs are merged to deeper layers so that the network 
can maintain both local and coarse information. SegNet7 consists of 
an encoder network, a corresponding decoder network followed by a 
pixel-wise classification layer. Each encoder layer has  corresponding 
decoder layer. The decoder used pooling indices computed in a max 
pooling step of the corresponding encoder to perform non-linear up-
sampling. Since positional or boundary information are lost during 
the max pooling operations in the encoder network, maintaining 
positional information for each up-sampling operation in the decoder 
network is critical for accurate pixel-wise segmentation.

UNet6 is used to indicate the precise position of the discovered defect. 
To summarise, UNet employs a network architecture that supports 
both downsampling and upsampling. Another name for it is the 
encoder-decoder structure. The pooling layer is used by the encoder 
to gradually reduce the spatial dimension of the input data, while 
the deconvolution layer is used by the decoder to restore the target’s 
details and the proper spatial dimension. Most of the time, the 
encoder and decoder will share information directly. This is to help 
the decoder get the information it needs as quickly as possible. The 
instance segmentation system employs a four-level network structure. 
In summary, the encoder is made up of several building blocks, each 
with two convolutional operation layers and one pooling operation 
layer. Below the encoder, two convolution layers and a dropout layer 
are added to serve as a bridge to the decoder. In each block of the 
decoder design, a maxunpooling layers and two convolution layers 
follow the decoding method. Surprisingly, after each maxunpooling 
layer, the processed data is required to perform a depth concatenation 
with the output produced by the second convolution layer from the 
associated encoder block. Finally, a convolution layer, a softmax layer, 
and a pixel classification layer are employed for output prediction. 
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image. In the dataset for each original image, the corresponding 
mask is provided. The mask image is considered to be the ground 
truth. A few example images from dataset are shown in Figure 2.

4.2 Feature/Defect Types
In this analysis, images having three types of surface features divided 
into three classes, repectively. The features of the first class have a set 
of characteristics close to cuts, termed as class A in this work. The 
class B contain images that include surface features that are in close 
resemblance to flay-cuts. Finally, the class C comprises of images 
containing regions that have interesting but normal features. Class 
C has a combination of surface features having the characteristics of 
creasing and folds. Although, these are not defects but have visually 
appealing characteristics, different appearance as compared to plain 
leather regions and a high frequency of occurance. The features in 
class A are usually elliptic in shape and do not carry much textural 
information, with the exception of at the edges. Class B visual 
features, on the other hand, have a rich texture and distinct colour 
tones in general that set them apart. The images from class C are 
characterized by bright regions which appear either due to leather 
bends or folds from the pressing of the wet blue on a slamming felt. 
These regions of high saturation usually have an elongated shape and 
occur at a high degree of varying scale. The majority of images incude 

only one feature class, however a small percentage of images have 
multiple class variations.

4.3 Ground Truth Labelling
Image labeller, a popular MATLAB annotation tool, is used to create 
the dataset’s ground truth annotations. The ability to annotate 
defects at various scales was a significant problem in the defect 
labelling process, necessitating the distinction between coarse and 
fine annotations. This was solved by establishing a balance of coarse 
and fine annotations. The grourd-truth labelled images are shown 
in Figure 3.

4.4 Experiment configuration
The experiments are conducted using MATLAB 2021a on an Intel(R) 
Xeon(R) E51620 v2 3.70 GHz processor, RAM 32GB. All the images 
used in the segmentation task are resized to 512 × 384. Concretely, all 
three FCN,8 UNet6 and SegNet7 architectures are trained with Adam 
as the optimization algorithm. The initial learning rate is set to 0.001 
and the epoch value is 20. Pixel-wise classification layer is used as 
the last layer in all the algorithms for the segmentation mask output.

4.5 Quantitative measures
When performing classification predictions, four types of outcomes 
could occur

•	� True Positive (TP): When a defected leather sample is predicted 
as defected by the model,

•	� True Negative (TN): When a leather sample without any defects/
features is predicted as non-defected by the model,

•	� False Negative (FN): When defects/features were present in 
leather but the model could not recognize them; it is also called 
as a Type 2 error,

•	� False Positive (FP): When the leather sample was non-defective 
but the model predicted it as defective (containing features); it is 
also known as a Type 1 error.

However, TN is not very meaningful in this research because the 
percentage of defects/features in this dataset is approximately 5-10%. 
Thus, TN is always high, even when the model does not predict 
defects/features well. The F1 and IOU scores are more important 
metrics in standard segmentation evaluation.  

                                      

                                      
	 Original Image	 Ground Truth	 Original Image	 Ground Truth	 Original Image	 Ground Truth

Figure 2. Dataset images with their corresponding ground truth.

Figure 3. Representative examples of ground truth annotations.  
Blue color represents class C, orange colour represents class A and yellow color 

represents class B images.
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The precision of the segmentation model indicates what proportion 
of positive predictions were deemed correct and is given as 

(9)

A related measure is recall which measures the proportion of actual 
positives which were identified correctly 

(10)

 The F1-score is the average of the precision and recall 

(11)

Consider the segmentation Bgt of a target object with a ground-
truth bounding box and a Bpr prediction bounding box. Regardless 
of confidence level, a perfect match is defined as the projected and 
ground-truth boxes having the same area and location. The IOU is 
determined by multiplying the amount of overlap (intersection) in 
the object detection scope between the predicted bounding box Bpr 
and the ground-truth bounding box Bgt by the area of their union, 
which is given in equation 

5 Results

In this section, we begin by presenting a quantitative comparison of 
state-of-the-art segmentation models. Next, we present qualitative 
comparison of the employed segmentation models on representative 
images from the proposed dataset. 

5.1 Quantitative Comparison
Table I shows the comparison of precision, recall, F1-score and IoU of 
state-of-the-art segmentation models on multi-class segmentation. 
UNet6 achieves 0.47 precision, 0.38 recall and 0.42 F1-score and IoU 
is 34. SegNet7 achieves 0.75 precision, 0.48 recall and 0.58 F1-score 
and IoU is 42. This shows that shallow networks are able to achieve 
better AP as compared to the deeper models.

The models’ performance on multi-class segmentation had room 
for improvement, therefore the next step was to train the models on 
each class separately and evaluate how they performed. As a result, 
we divided the primary dataset into three datasets, one for each class, 
and trained the models on these datasets. The comparison of these 
classes is shown in Table II. Because FCN[8] was unable to provide 
sufficient results in the binary class, its results are not included in 
Table II. The main reason for this is because the FCN8 model was 
over-fitting as the data was further separated into three sections, and 
it failed to produce any useful results because of small dataset and 
intra class variation which lead to over-fitting of FCN model.

In Table II, we can see the comparison of models on each class and 
we can see that SegNet performance was better than UNet6 in every 
class. For classA, SegNet was able to achieve F1-Score of 0.86 and IoU 
of 0.79 while UNet performance was also similar to SegNet. For class 
B, both models got identical F1-Score and IoU. On class C images, 
again SegNet outperformed UNet and achieved an F1-Score of 0.7 
and an IoU of 0.61. As SegNet performance was better than UNet 
in each class. For ensemble model we combined all three models of 
SegNet. The result of our ensemble model which is also the proposed 

Table I

Comparison of the segmentation performance of our proposed method with other  
state-of-the-art segmentation models for the wet-blue leather dataset

Serial # Model Precision Recall F1-Score IoU

1 UNet6 0.47 0.38 0.42 0.34

2 SegNet7 0.75 0.48 0.58 0.42

3 FCN8 0.85 0.46 0.60 0.44

4 Proposed 0.85 0.71 0.74 0.69

Table II

Class-wise comparison of the segmentation performance of state-of-the-art 
segmentation methods

Defect Model Backbone Precision Recall F1-Score IoU

Class A
SegNet7 ResNet-50 0.83 0.90 0.86 0.79

UNet6 ResNet-50 0.85 0.83 0.84 0.76

Class B
SegNet ResNet-50 0.88 0.63 0.71 0.63

UNet ResNet-50 0.77 0.67 0.71 0.63

Class C
SegNet ResNet-50 0.83 0.65 0.70 0.61

UNet ResNet-50 0.84 0.6 0.66 0.58

TP
TP + FP

Precision =                                        

TP
TP + FN

Recall =                                        

Precision × Recall
Precision + Recall

F1 – score = 2                                         

area (Bpr ∩ Bgt)
area (Bpr ∪ Bgt)

J (Bpr, Bgt) = IOU =                                         
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model is given in Table I. We can see in Table I that proposed model 
outperformed all other state-of-the-art models.

5.2 Qualitative Comparison
Figure 4 shows the experimental results of different algorithms 
for defect/feature segmentation. In the first column (a) at number 
one is the original image that contains class A features, second is 
the ground truth, third is the result of the proposed method which 
obtained a close segmentation. The fourth and fifth images contain 
results of SegNet7 and Unet, respectively. Both were able to segment 
the cut but there were a few false segmentations as well. Similarly, 
the sixth image contains segmentation results of FCN,8 which 
is similar to both UNet and SegNet.7 If we look at the results of 
column (b) (proposed model) and FCN, both segmented the class 
A image and do not give false positive results, whereas Unet and 
SegNet again gave a few false positives as well. In column (c), except 
for Unet, all the models predicted class B where as Unet, while able 
to segment the class B region, gave few false positives as well. In 
column (d), again only the proposed method was able to give the 
correct segmentation, and again the other models were not able to 

give the correct segmentation. Column (e) and (f) contain regions 
with class C features, which is a very difficult class because of intra 
class variation. Again, the proposed model performed better than 
other models but even the proposed model failed to give exact 
segmentation. 

6 Conclusion

Automated visual inspection of leather in an industrial setting has 
recently received a lot of interest. There have been numerous machine 
learning algorithms proposed in the past, but convolutional neural 
network-based approaches remain rare. In this paper, we provide 
an ensemble convolutional neural network for visual inspection 
of wet-blue leather. In terms of F1-Score and IoU, our proposed 
method outperformed three state-of-the-art deep learning-based 
segmentation algorithms. A F1-Score of 74 percent and IoU of 66.7 
percent were achieved by our model. Regardless of its competitive 
performance, the proposed method would need to be converted for 
real-time use, which would include thorough video data tweaking. A 

                

               

                   

                 

                

               
                    Original Images              Ground Truth              Proposed Model                   SegNet                           UNet                               FCN

Figure 4. Visual comparison of the state-of-the-art methods for leather defect detection. (a) and (b) rows represent segmentation results 
of class A, (c) and (d) rows represent segmentation results of class B, (e) and (f) represents segmentation results on class C images.
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significant future direction is the development of a system that can 
segment leather data in a real-world industrial scenario. Finally, the 
development of such systems that can characterise different defect 
types in terms of their properties could lead to artificial intelligence-
based automated quality grading of leather samples.

Acknowledgment

This work was supported by NZ Leather and Shoe Research 
Association (LASRA®), Palmerston North, New Zealand through 
the Ministry of Business, Innovation and Employment (MBIE) 
grant number LSRX1801.

References

	 1.	� M. Aslam, T. M. Khan, S. S. Naqvi, G. Holmes, and R. Naffa, “On 
the Application of Automated Machine Vision for Leather Defect 
Inspection and Grading: A Survey,” IEEE Access, vol. 7, pp. 176065–
176086, 2019, doi: 10.1109/ACCESS.2019.2957427.

	 2.	� T. Durand, N. Thome, and M. Cord, “WELDON: Weakly 
Supervised Learning of Deep Convolutional Neural Networks,” in 
2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), 2016, pp. 4743–4752.

	 3.	� M. Egmont-Petersen, D. de Ridder, and H. Handels, “Image 
processing with neural networks—a review,” Pattern Recognit., vol. 
35, no. 10, pp. 2279–2301, 2002, doi: https://doi.org/10.1016/S0031 
-3203(01)00178-9.

	 4.	� C. Harris and M. Stephens, “A combined corner and edge detector,” 
in In Proc. of Fourth Alvey Vision Conference, 1988, pp. 147–151.

	 5.	� K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for 
Image Recognition,” in 2016 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), 2016, pp. 770–778.

	 6.	� O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional 
Networks for Biomedical Image Segmentation,” Lect. Notes 
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. 
Notes Bioinformatics), vol. 9351, pp. 234–241, May 2015, 
Accessed: Oct. 04, 2021. [Online]. Available: https://arxiv.org/abs 
/1505.04597v1.

	 7.	� V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A 
Deep Convolutional Encoder-Decoder Architecture for Image 
Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 
39, no. 12, pp. 2481–2495, Dec. 2017, doi: 10.1109/TPAMI.2016 
.2644615.

	 8.	� J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional 
Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 39, no. 4, pp. 640–651, Nov. 2014, Accessed: Oct. 
04, 2021. [Online]. Available: https://arxiv.org/abs/1411.4038v2.

	 9.	� F. P. Lovergine, A. Branca, G. Attolico, and A. Distante, “Leather 
inspection by oriented texture analysis with a morphological 
approach,” in Proceedings of International Conference on Image 
Processing, 1997, vol. 2, pp. 669–671.

	10.	� C. Giardina and E. Dougherty, “Morphological methods in image 
and signal processing,” undefined, 1988.

	11.	� C. K. Lee and S. P. Wong, “A mathematical morphological 
approach for segmenting heavily noise-corrupted images,” Pattern 
Recognit., vol. 29, no. 8, pp. 1347–1358, 1996, doi: 10.1016/0031-
3203(96)86888-9.

	12.	� M. Lanzetta and G. Tantussi, “Design and Development of a Vision 
Based Leather Trimming Machine,” AMST’02 Adv. Manuf. Syst. 
Technol., pp. 561–568, 2002, doi: 10.1007/978-3-7091-2555-7_64.

	13.	� S. T. Liong, Y. S. Gan, Y.-C. Huang, C.-A. Yuan, and H.-C. Chang, 
“Automatic Defect Segmentation on Leather with Deep Learning,” 
2019.

	14.	� K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” 
Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-October, pp. 2980–
2988, Dec. 2017, doi: 10.1109/ICCV.2017.322.

	15.	� T. Mauldin, A. H. Ngu, V. Metsis, and M. E. Canby, “Ensemble 
Deep Learning on Wearables Using Small Datasets,” ACM Trans. 
Comput. Healthc., vol. 2, no. 1, pp. 1–30, 2021, doi: 10.1145/3428666.

	16.	� A. Cazanas-Gordon, E. Parra-Mora, and L. A. D. S. Cruz, 
“Ensemble Learning Approach to Retinal Thickness Assessment in 
Optical Coherence Tomography,” IEEE Access, vol. 9, pp. 67349–
67363, 2021, doi: 10.1109/ACCESS.2021.3076427.

	17.	� Y. Chen, D. Li, X. Zhang, J. Jin, and Y. Shen, “Computer aided 
diagnosis of thyroid nodules based on the devised small-datasets 
multi-view ensemble learning,” Med. Image Anal., vol. 67, p. 
101819, 2021, doi: 10.1016/j.media.2020.101819.

	18.	� E. Baykal Kablan, H. Dogan, M. E. Ercin, S. Ersoz, and M. Ekinci, 
“An ensemble of fine-tuned fully convolutional neural networks 
for pleural effusion cell nuclei segmentation,” Comput. Electr. Eng., 
vol. 81, p. 106533, 2020, doi: 10.1016/j.compeleceng.2019.106533.

	19.	� B. Savelli, A. Bria, M. Molinara, C. Marrocco, and F. Tortorella, 
“A multi-context CNN ensemble for small lesion detection,” Artif. 
Intell. Med., vol. 103, no. April 2019, p. 101749, 2020, doi: 10.1016/j.
artmed.2019.101749.

	20.	� M. Aslam, T. M. Khan, S. S. Naqvi, G. Holmes, and R. Naffa, 
“Ensemble Convolutional Neural Networks with Knowledge 
Transfer for Leather Defect Classification in Industrial Settings,” 
IEEE Access, vol. 8, pp. 198600–198614, 2020.

	21.	� M. Aslam, T. M. Khan, S. S. Naqvi, G. Holmes, and R. Naffa, 
“Learning to Recognize Irregular Features on Leather Surfaces,” J. 
Am. Leather Chem. Assoc., vol. 116, no. 5, 2021.


