A Developmental Study of the Marine Crustacean "Paryhale hawaiensis": the role of the marsupium in growth and survival

Presented by Joel Blair University of Cincinnati Senior Capstone 2019

# Background

Research Question: Embryos can be removed from female marsupium at a single cell for detailed study and manipulation, how does stage removed affect survival and growth once hatched?

**Hypothesis**: Stage an embryo removed (single cell, mid stage, late stage) effects growth and survival of juveniles.



Colony Setup



Paryhale hawaiensis

## Methods

1.Identify stage



2. Anesthetize in clove oil



3. Forceps retraction, isolate embryos



Growth over Time



Day 1



Day 3



Day 10

## Results

- Lower initial survival % for juveniles extracted earlier stage. Both Single Cell and Paddle Tail (mid-stage) hit LD 50, at 5 days since hatched.
- Limb dysmorphia and bacterial growth observed for higher proportion juveniles removed SC and PT.











Source: Browne, William E., et. al. "Stages of Embryonic Development in Amphipod Crusteacean, *Paryhale hawaiensis*"

## Results

- ➤ Significant difference in growth rate between each stage.
- Analysis: 2-Way ANOVA test model effect of days since hatched and stage extracted on length
- > Tukey HSD test for multiple pairwise comparison.











Source: Browne, William E., et. al. "Stages of Embryonic Development in Amphipod Crusteacean, *Paryhale hawaiensis*"

# Final Thoughts

#### >Overview:

- ➤ Single Cell and Mid Stage embryos showed lower survival rate.
- Removal from the marsupium at any stage has a significant effect on juvenile growth
- ➤ Critical window in embryological development

#### >Future Research:

- >RNA sequencing for Differential Expression between stages
- Comparative study microbiome diversity between stages

# Questions?

## Statistical Tests

#### Tukey multiple comparisons of means

95% family-wise confidence level Fit: aov(formula = len ~ stage \* days\_hatched)

| stage   | diff        | lwr          | upr         | p adj    |
|---------|-------------|--------------|-------------|----------|
| PT-CT2  | -0.16855654 | -0.225292016 | -0.11182107 | 0.000000 |
| RE2-CT2 | -0.10961082 | -0.164048351 | -0.05517329 | 0.000006 |
| SC-CT2  | -0.40073529 | -0.459679186 | -0.34179139 | 0.000000 |
| RE2-PT  | 0.05894572  | 0.001316719  | 0.11657472  | 0.043004 |
| SC-PT   | -0.23217874 | -0.294082221 | -0.17027527 | 0.000000 |
| SC-RE2  | -0.29112446 | -0.350928905 | -0.23132002 | 0.000000 |

#### 2-Way ANOVA

Fit: aov(formula=len~stage\*days\_hatched)

| Response: len      | Df | Sum Sq | Mean Sq | F value | Pr(>F)      |
|--------------------|----|--------|---------|---------|-------------|
| stage              | 3  | 2.0491 | 0.6830  | 109.399 | < 2e-16 *** |
| days_hatched       | 4  | 0.5602 | 0.1400  | 22.431  | 1.4e-12 *** |
| stage:days_hatched | 12 | 0.1659 | 0.0138  | 2.214   | 0.018 *     |
| residuals          | 83 | 0.5182 | 0.0062  |         |             |