Vertebrate Species Response to Little Ice Age Climate Change In Ohio River Valley Nichelle Flashette Lyle & Kenneth Barnett Tankersley

Introduction

This study examines vertebrate and invertebrate taxa identified from chronometrically dated archaeological contexts in the Ohio River valley to examine animal species response to changes in climate during the Holocene. The Ohio River valley includes the tributary streams of the Scioto, Little Miami, Licking, Great Miami, and Kentucky rivers. For almost 300 years, faunal remains have been collected from archaeological sites in this region (Willey and Sabloff, 1980).

In order to examine species response to climate changes during the Holocene, we obtained data on the location, age, and taxa of vertebrate and invertebrate remains from archaeological sites. While there are many thousands of sites documented in this region, the quality of data vary greatly, from the types of data reported to the ways they are reported. Although synchronic cultural summaries have written for the region, there has been no attempt to examine faunal data diachronically in terms of species response to Holocene climate change.

Following the standard set by Graham and Lundelius (1994), archaeological site criteria for this study includes: (1) a known geographic location; (2) chronological controls including radiocarbon dates, stratigraphy, and known cultural affiliation; (3) species level animal taxa; (4) data that can be found in published peer-reviewed scientific literature, theses, or accessible cultural resource management reports; and, (5) faunal remains that are curated in public institutions. Using these parameters, we filtered the data into standardized taxonomic classifications and established temporal periods, eliminated mixed assemblages, and calibrated radiocarbon dates.

Because this study focuses on species response to Holocene climate change, the data have been specifically collected from sites with precise temporal control. For this reason, many sites were excluded. Chronometric dating is one of the most important aspects of any archaeological investigation. In order to accurately interpret species response to climate change, it is crucial to document faunal taxa within a temporal framework. The most precise and trustworthy chronologies in the Ohio River valley are those developed from calibrated radiocarbon dates, using samples of known composition from well-documented archaeological, geological, and environmental contexts.

Between ~CE 1400 and 1850 the Ohio River valley experienced a significant cooling and drying event known as the Little Ice Age. The peak of this cold dry climate occurred ~CE 1500 and 1600. Although the decline in global mean annual temperatures was only 0.5°C, winters in the Ohio River valley were harsh winters, the growing seasons shorter, and the climate overall dryer, which resulted in a significant lowering of the water table. Welldated Protohistoric Fort Ancient sites with well-preserved faunal remains in the Ohio River valley that date to the Little Ice Age include: Augusta, Bracken County, Kentucky; Big Bone Lick, Boone County, Kentucky; the Lower Shawnee Town Complex, Greenup and Lewis counties, Kentucky; Madisonville site, Hamilton County, Ohio; Snag Creek, Bracken County, Kentucky; and Wynema, Hamilton County, Ohio.

Sites:		Archaic	Woodland	Fort Ancient	Proto-Historic	
Таха	Туре					Lithasia obovata
Accipiter cooperii	Bird	0	0	1	0	Lontra canadensis
Actinonair liagmenting	Invertebrate	1	0	1	1	Lophodytes cucullatus
Aiuspana	Died	1	0	1	1	Lynx rufus
Aix sponsa	Bira	1	U	U	U	Magnonas nervosa
Amblema plicata	Invertebrate	1	1	. 1	. 1	Marmota monax
Ambystoma sp.	Amphibian	1	0	C	0	Martes americana
Anas carolinensis	Bird	0	0	0	1	Megalongias gigantean
Anas discors	Bird	1	1	. 0	0	Melegaris gallongvo
Anas platyrhynchos	Bird	0	1	. 1	0	
Anas sp.	Bird	1	0	C	1	Mephitis mephitis
Anauispira picta	Invertebrate	1	0	1	0	Mergus sp.
Anguispira altornata	Invertebrate	-	0	-	0	Mesodon clausus
Anguispira anemata	invertebrate	U	0	Ū	0	Mesomphix sp.
Anguispira kochi	Invertebrate	1	0	1	. 0	Micropterus dolomieu
Anodonta sp.	Invertebrate	0	1	. 1	. 0	Micropterus sp.
Anser caerulescens	Bird	0	1	. 1	. 0	Microtus ochrogaster
Aplodinatus grunniens	Fish	1	1	. 1	. 1	Microtus pennsylvanicus
Ardea herodias	Bird	0	0	1	. 1	Mierotus permisyrvanicus
Asio flammeus	Bird	0	0	1	. 0	Microtus sp.
Bison bison	Mammal	0	0	C	1	Moxostoma carinatum
Blarina hrevicauda	Mammal	1	1	1	0	Moxostoma erythrurum
Branta previenda	Diad	1	-	-		Moxostoma sp.
Branta canadensis	Bird	1	1	. 1	1	Mustela frenata
Bubo virginianus	Bird	1	0	1	. 1	Mustela vison
Bufo americanus	Amphibian	1	0	C	0	Neotoma floridana
Bufo sp.	Amphibian	1	0	0	0	Numenius americanus
Buteo jamaicensis	Bird	0	0	1	. 1	
Buteo sp.	Bird	1	0	C	0	Obiguaria rejiexa
Campostoma anomalum	Fish	1	0	C	0	Obovaria olivaria
Canis familiarus	Mammal	1	1	1	1	Obovaria retusa
Canis Jatrans	Mammal	-	-	-	-	Obovaria subrotunda
Canis Iunis	Mammal	0	U	u	1	Odocoileus viriginianus
canis iupis	iviammal	1	1	0	1	Olor buccinator
Canis sp.	Mammal	1	1	0	0	Ondontra zibethicus
Cardinalis cardinalis	Bird	0	0	1	0	Oryzomys palustris
Castor canadensis	Mammal	1	1	1	1	Otis asio
Castostomidae	Fish	1	0	1	1	Bassarifarm
Catostamus sp.	Fish	0	1	0	0	russerijormes
Catostomidae	Fish	0	0	C	0	Perca flavescens
Centrarchidae	Fich	1	0	0	1	Percifiormes sp.
Contra considencia	Mammal	1	1	1	1	Peromyscus leucopus
Cervus canadensis	wammai	1	1	. 1	1	Peromyscus sp.
Chelydra serpentina	Reptile	1	1	1	1	Plagiola lineolata
Chrysems picta	Reptile	0	1	. 0	0	Plethobasus cicatricosus
Chrysemys sp.	Reptile	1	0	0	1	Plethobasus cynhyus
Colinus virginianus	Bird	1	1	0	0	Pleurobema clava
Colubridae	Reptile	1	1	. 1	. 1	
Corvus brachyrhynchos	Bird	1	1	. 1	1	Pleurobema cordatum
Corvus corax	Bird	0	0	1	1	Pleurobema plenum
Crotalidae	Pentile	1	1	1	1	Pleurobema rubrum
	Reptile	1	1	1	1	Pleurobema sintoxia
Crotalus norridus	Reptile	1	U	ŭ	U	Pleurobema sp.
Crotalus sp.	Reptile	0	0	0	1	Plyodictis olivaris
Cryptobranchus sp.	Amphibian	1	0	1	. 0	Podilymubs podiceps
Cryptotis parva	Mammal	1	0	0	0	Potamilius alatus
Cycolnaias tuberculata	Invertebrate	0	1	. 1	. 1	
Cyprinidae	Fish	0	0	1	. 1	Procyon locator
Cyprogenia stegaria	Invertebrate	1	0	1	1	Procyon lotor
Didelfis virainiania	Mammal	1	1	1	1	Proptera alata
Didelphis virginianus	Mammal	-	-	1	-	Prychobranchus fuasciolaris
Dideipins virginianas	wannan	0	U	1		Pseudemys scripta
Dryocopus pileatus	Bird	0	0	1	. 1	Ptychobranchus fasciolaris
Dysnomia torulosa	Invertebrate	0	1	. 1	. 0	Quadrula cylindrical
Ectopistes migratorius	Bird	1	0	1	. 1	Quadrula metanerva
Ellipsaria lineolata	Invertebrate	0	0	1	. 0	Quadrula pustulosa
Elliptio crassidens	Invertebrate	0	1	. 1	. 1	Quadrula quadrula
Elliptio dilatata	Invertebrate	1	1	1	. 1	
Epioblasma flexuosa	Invertebrate	0	0	1	1	Rana catesbelana
Enioblasma sampsoni	Invertebrate	0	0	0	1	Rana pipens
Epioblasma tarulosa	Invertebrate	0	0	1	-	Rana sp.
	invertebrate	U	0	1	1	Scalopus aquaticus
Erethizon dorsatum	Mammal	1	0	1	. 0	Scaphirhynchos platyorynchos
Esox sp.	Fish	0	0	0	1	Scaphirhynchos sp.
Falco sparverius	Bird	0	0	1	. 0	Sciurs carolinensis
Felis concolor	Mammal	0	1	. 1	. 1	Sciurs niger
Fusconaia ebena	Invertebrate	0	1	. 1	. 1	Sciurus niger
Fusconaia maculata	Invertebrate	0	0	C	1	Cerev en
Fusconaia sp.	Invertebrate	1	0	0	0	Sorex sp.
Fusconaia subrotunda	Invertebrate	0	1	. 1	0	Stenotrema hirsutum
Gastropoda	Invertebrate	1	0	0	1	Sternotherus minor
Gavia immer	Bird	0	1	1	0	Sternotherus odoratus
Gavia immer	ыга	U	1	1	0	Sternotherus sp.
Glauscomys volans	Mammai	1	U	1	. 0	Stizostedion canadense
Goniobasis sp.	Invertebrate	1	0	0	0	Stizostedion sp.
Graptemys sp.	Reptile	1	1	. 1	. 0	Strigformes sp.
Grus canadensis	Bird	0	0	1	0	Striaidae
Haliaeetus leucocephalus	Bird	0	1	. 1	. 1	Strix varia
Haplotrema concavum	Invertebrate	1	0	C	0	
Hybopsis bigugatata	Fish	0	1	0	0	sylviagus aquaticus
Ictaluridae sp.	Fish	1	0	0	0	Sylviagus floridanus
	Fich	-	0	1	0	Symbos cavifrons
lotolugue nunctalua	Fich	0	0	1	U	Tamias striatus
ictulurus punctalus	risii	1	1	1	1	Tapris hayesii
Ictalurus sp.	Fish	0	1	1	1	Taxadea taxus
Ictiobus bubalus	Fish	1	0	1	0	Terrapene carolina
Ictiobus sp.	Fish	0	0	0	1	Timias striatus
Kinosternidae	Reptile	1	0	0	0	Tringa so
Lampsilis abrupta	Invertebrate	1	0	0	1	Tringu sp.
Lampsilis ovata	Invertebrate	1	1	1	1	i rinoyx sp.
Lampsilis sp.	Invertebrate	1	1	1	1	Triodopsis albolabris
Lampsilis teres	Invertebrato	1	0	0	0	Triodopsis denotata
	Invertebrate	0	0	0	1	Trionyx sp.
Lampsilis ventricosa	invertebrate	0	1	1	0	Trionyx spinferus
Lasmigona complanta	Invertebrate	0	1	1	0	Tritogonia verrucosa
Lasmigona costata	Invertebrate	0	1	1	0	Turdua migratorius
Lepisosteus osseus	Fish	0	1	0	0	Unio sp.
Lepisosteus platostroms	Fish	0	0	1	0	
Lepisosteus sp.	Fish	1	1	0	1	Urous crister
Leptoxis carinata	Invertebrate	0	1	n	0	Ursus americanus
Liaumia recta	Invertebrate	1	1	1	1	Viperidae
			1			Vulpes sp.

University of CINCINNATI

Faunal	Distrib	outions

Archaeological faunal remains in the Ohio River valley result from the procurement animal resources, which were available to ancient human populations and ultimately reflect the composition of ancient ecosystems. Climate change causes changes to occur in the ecosystem, which changes the composition of available animal resources.

The decisions people made concerning what animal resources were procured and processed and how they were used directly affected their adaptability. These decisions are archaeologically preserved as patterns in the exploitation of animal resources. An important economic dimension of human adaptability to climate change is the availability of species required to sustain or maintain human livelihood.

In the Ohio River valley, mammals and freshwater mussels are the predominate taxa represented in archaeological sites, which date to the Holocene. More than 50% of the mammals and freshwater mussels available during the Holocene were exploited. This high percentage of exploited species may be the result of their adaptability and sustainability throughout the climatic changes of the Holocene. However, there were temporal variations in other taxa.

During the Holocene Climatic Optimum, Archaic populations exploited a greater number of amphibians and reptiles (e.g., aquatic turtles) than other cultural periods as well as a greater diversity of mammals. This emphasis on aquatic species is likely a result of the warm and moist conditions of the Holocene Climatic Optimum. A similar exploitation pattern occurs during the Medieval Warming. Fort Ancient populations exploited a greater number of fish and migratory water foul than other cultural periods.

The occurrence of extralimital bird and mammal species from well-dated archaeological contexts may be the best indicator of climate change during the Holocene. Extralimital species from Archaic archaeological sites, which date to the Holocene Climatic Optimum include both southern species such as Oryzomys palustris (Rice Rat) and Sylviagus aquaticus (Swamp Rabbit) as well as northern species such as *Anser caerulescens* (Snow Goose) and *Erethizon dorsatum* (Porcupine).

The occurrence of northern extralimital species are also present on Woodland archaeological sites, which date to the post-Holocene Climatic Optimum including Anser caerulescens (Snow Goose), Gavia immer (Common Loon), Lophodytes cucullatus (Hooded Merganser), and *Martes Americana* (Pine Martin), as well as the western *Olor buccinator* (Trumpeter Swan) and *Taxadea taxus* (Badger). Similarly, northern extralimital species dominate on Fort Ancient archaeological sites, which date to the Medieval Warming including Anser caerulescens (Snow Goose), *Gavia immer* (Common Loon), *Lophodytes cucullatus* (Hooded Merganser), and Podilymbus podiceps (Pied-billed Grebe) as well as the western *Olor buccinator* (Trumpeter Swan) and southern Oryzomys palustris (Rice Rat).

The greatest biogeographic diversity of extralimital species occur on Protohistoric Fort Ancient sites, which date to the Little Ice Age including the western *Bison bison* (Modern Bison), *Olor buccinator* (Trumpeter Swan), and Taxadea taxus (Badger), the northern *Erethizon dorsatum* (Porcupine) and *Martes americana* (Pine Martin), as well as the southern Oryzomys palustris (Rice Rat).

Discussion

Global climatic changes during the Holocene created changes in the amount of sea-ice cover, which produced marked regional alterations in the ecosystems of the Ohio River valley and ultimately exploited animal resources. These climatic changes caused individualistic shifts or disharmony in the biogeographic distributions of Holocene birds and mammals.

During the Holocene, the presence or absence of individual bird and mammal species and the composition of species communities was highly variable because of their individual adaptation to climatic change. Most of the extralimital vertebrates from archaeological sites in the Ohio River valley are well south of their present biogeographic ranges (e.g., common loon, hooded merganser, pine martin, pied-billed grebe, porcupine, and snow goose). However, there are also species, which are well east (e.g., badger, bison, and trumpeter swan) and north (e.g., rice rat) of their present ranges.

Extralimital Taxa

Woodland

Common Name

Rice Rat

Pine Martin

Snow Goose Common Loon

Badger

Snow Goose

Trumpeter Swan

Modern Bison

Porcupine Pine Martin

Badger

Trumpeter Swan Rice Rat

Pied-billed Grebe Rice Rat

oded Merganser

Snow Goose Porcupine Swamp Rabbit

Bird and mammal species with biogeographic distributions north, south, and west of the Ohio River valley occur in direct stratigraphic association with species that have present day temperate, mid-latitude biogeographic distributions. The stratigraphic association of these presently allopatric species is an example of non-analog associations, which are characteristic of periods of profound global climate change.

The temporal distributions of extralimital bird and mammal species suggests that the Holocene climate was by no means homogenous. Rather, bird and mammal remains from Archaic through Protohistoric Fort Ancient archaeological sites in the Ohio River valley are indicative of taxa that changed constantly and nonanalogously. Amphibians, invertebrates, and reptiles appear to have been unaffected by natural changes in climate.

Funding

This research was supported by the Charles Phelps Taft Foundation, the Court Archaeological Research Foundations, and University of Cincinnati STEM funds.

- known as the Little Ice Age
- Looking for a vertebrate "signal" for this period in the archaeological record
- Examined vertebrates and invertebrate identified from the Ohio River valley during an excavation as well as artifacts housed at C.A.R.F.
- Examined animal species response to changes in climate during the Holocene.
- Location, age, and taxa of vertebrate and invertebrate remains from archaeological sites
- Looked for patterns in the data to identify a presence/absence "signal"

Between 1400 and 1850 the Ohio River valley experienced a significant cooling and drying event

- Shows the composition of ancient ecosystems
- available animal resources
- Holocene
- used
- during the Holocene

Animal remains result from resources that were available to ancient human populations

Climate change causes changes to occur in the ecosystem, which changes the composition of

Mammals and freshwater mussels are the most represented in archaeological sites dating to the

More than 50% of the mammals and freshwater mussels available during the Holocene were

• The occurrence of extralimital bird and mammal may be the best indicator of climate change

Archaic archaeological sites, which date to the Holocene Climatic Optimum

- Rice Rat
- Swamp Rabbit
- Snow Goose
- Porcupine

Woodland archaeological sites, which date to the post-Holocene

- Snow Goose
- Common Loon
- Hooded Merganser
- Pine Martin
- Trumpeter Swan
- Badger

Fort Ancient Sites

Snow Goose Common Loon Hooded Merganser Pied-billed Grebe Trumpeter Swan Rice Rat

Protohistoric Fort Ancient Sites

Bison Trumpeter Swan Badger Porcupine Pine Martin Rice Rat

- The presence or absence (signal) of bird and mammal species is highly variable because of their individual adaptation to climatic change
- present biogeographic ranges
- Distribution shows characteristics of a period of profound global climate change.
- same
- have been unaffected by natural changes in climate

Funding This research was supported by the Charles Phelps Taft Foundation, the Court Archaeological Research Foundations, and University of Cincinnati STEM funds.

These climatic changes caused shifts in the biogeographic distributions of Holocene birds and mammals

Most of the extralimital vertebrates from archaeological sites in the Ohio River valley are well south, east, and north of their

The temporal distributions of extralimital bird and mammal species suggests that the Holocene climate was by no means the

Rather, bird and mammal remains from Archaic through Protohistoric Fort Ancient archaeological sites in the Ohio River valley are indicative of taxa that changed constantly and non-analogously. Amphibians, invertebrates, and reptiles appear to

