DISCUSSION

Studies investigating the correlation between WMC and task performance groups for WM, or the EF responsible for maintaining targets while excluding potential 1kHz FM tone/1000 distractors for WMC scores of 8 than 16 distractors for white noise burst. A specific to complex listening, EFs work to reduce the negative effects of results from e.g. target = variation of white noise burst, distractor = variation p’s & Sharma, 2013; Perhaps median split or when WMC was analyzed via e.g. target = variation of white noise burst, distractor = dog bark may observed between individuals with lower WMCs when completing complex listening tasks (Hill & Miller, 2010). Specifically, some individuals with higher WMC have shown more effective AC than selective attention (SA) subset of AC, as studies have shown WMC to be a memory capacity (WMC) is defined as the ability to coordinate available resources. In this study, working memory capacity (WMC) was measured in the Working Memory Capacity (WM) task. The Working Memory Capacity (WM) task involves listening to a series of sounds, which may be a combination of music and speech, and remembering the order of the sounds. This task is often used to assess working memory capacity, which is the ability to hold and manipulate information in mind while performing other cognitive tasks.

In this study, participants were presented with a series of sounds, and were asked to remember the order of the sounds. The sounds were presented in a serial order, and the participants were asked to recall the order of the sounds after a delay interval. The delay interval was varied across trials, and the order of the sounds was randomized across trials. The participants were told to listen carefully to the sounds, and to remember the order of the sounds for recall.

The procedure was the same as an Ex 1A. However, target sounds varied in duration. Therefore, participants had to keep track of the duration of the target sound. The duration of the target sound varied from 100ms to 300ms. Participants were instructed to respond with a “1” if the target sound was 100ms, a “2” if the target sound was 200ms, and a “3” if the target sound was 300ms. In addition, there were neutral sounds, which were characterized by a different variation of white noise burst. Neutral sounds were characterized by a different variation of white noise burst presented in the non-target ear. Participants were instructed to respond with a “0” if the neutral sound was presented in the non-target ear. Neutral sounds were always presented in the non-target ear, and were always presented after the target sound.

The dependent variable for this study was reaction time (RT). Reaction time was defined as the time interval between the presentation of the target sound and the participant's response. The accuracy of the participant's responses was also recorded.

The results showed that reaction times were slower for participants with lower WMC. In addition, accuracy was lower for participants with lower WMC. These results support the hypothesis that WMC is related to listening performance. The results also suggest that WMC is related to the ability to handle multiple tasks and to maintain information in mind while performing other tasks.

In conclusion, the results of this study support the hypothesis that WMC is related to listening performance. The results also suggest that WMC is related to the ability to handle multiple tasks and to maintain information in mind while performing other tasks.