
Author: Isaiah Dicristoforo

Project Advisor: Bill Nicholson, Assistant Professor, IT Program, UC Clermont

April 13, 2020

UC UNDERGRADUATE SCHOLARLY SHOWCASE 2020

CREATING DICTIONARY ATTACK
SOFTWARE USING A POWERFUL

SERVER AND JAVAFX.

1

Research Question

 How can a high-powered server, multi-threading, and various dictionary attack word

lists be used to develop a fast and informative password cracking tool?

Abstract

 The goal of this project was to create a password cracking tool and measure its

effectiveness when deployed on a high-powered server. The password cracking tool was built

using the Java FX framework and implements various multi-threading techniques to maximize

the speed at which it cracks passwords. The password cracking tool was also created to deliver

informative results to its end-user and contains a comprehensive interface that provides

statistics about the passwords that the tool cracks. By performing identical tests on a laptop

and the high-powered server, the performance increase of running the software on the server

was able to be measured. Attempts were made to further increase the performance of the

password cracker by executing code on the server's graphics processing units (GPUs).

Experimentation with several libraries built for Java GPU programming resulted in the

successful implementation of basic Java code that could run on a GPU; however, several

limitations prevented the use of GPU programming for the password cracking software.

Ultimately, however, the software developed for this project turned out to be both a fast

password cracker and a beneficial tool for providing analysis about the characteristics found in

cracked passwords.

2

Methodology
Overall Goal

 When developing the dictionary attack software, there were two objectives in mind.

First, there was a need to create a fast application that could spawn hundreds of threads to

utilize the full computing power of a machine. The second objective was to give the user of the

password cracker helpful feedback and analysis about the passwords that they cracked, to help

them pinpoint specific characteristics found in weak passwords. The results generated by the

password tool could help a user strengthen their passwords or aid a cybersecurity professional

in strengthening their password policy. This second objective was, in part, the impetus for the

decision to design a graphical user interface.

User Interface Vs. Command Line

 In short, the decision to design a graphical user interface for this project was made to

provide the user with a more accessible and informative experience than they would have

received using a command-line application. Many

common password cracking tools used today, like

John the Ripper, are command-line utilities. The

graphical user interface in this project was

designed to see how command-line tools like

John the Ripper would be realized as a user

interface. The user interface was designed as a

Figure 1: The password cracking user interface created for this project.

3

more accessible alternative to command-line utilities, which often require the user to

memorize advanced commands in order to use them. However, while a user interface can

provide someone with more informative and visually appealing data than a command-line

utility can, there is a speed-trade off that must be taken into consideration. Is it wise to waste

resources updating a chart, and a timer on the screen? That question exemplifies the challenge

faced when building the user interface for this project: how does a developer walk the line

between developing a fast application, while spending time doing arguably unnecessary

updates to the UI that provide the user interesting visual feedback?

 A password cracking tool like John the Ripper dedicates its resources to cracking

passwords as fast as possible but provides very little analysis. To demonstrate this, I created a

small eight-word password list, hashed it,

and passed the file into a version of John

the Ripper running on a Kali Linux virtual

machine. John the Ripper recognized the

hashing algorithm used and ran the hashes

against its default word list. I used the show command to display a list of passwords the tool

had cracked, and they appeared on the terminal. There was a notable absence of analysis and

statistics about the dictionary attack I had just performed. A black-hat hacker might only care

about breaking into a system, but a security analyst might want to know some information

about the passwords they crack, such as their entropy, and common patterns found in the

cracked passwords. That premise was the reason that the password cracking tool built for this

project includes so much information about the passwords that the tool cracks. For example,

Figure 2: John the Ripper Test

4

the password cracking tool integrates some existing open-source software that measures the

strength of a password.

Designing A Dictionary Attack

 Two common methods of cracking passwords are dictionary and brute force attacks.

This project's scope was limited to dictionary attacks. A 2018 study published by the Institute of

Electrical and Electronics Engineers (IEEE), titled Brute-force and dictionary attacks on hashed

real-world passwords, revealed that "dictionary attacks with the exception of larger hybrid

approaches are must faster than the brute-force method" (Bosnjak et al. 1161). Dictionary

attacks are not only faster but are an intriguing field of study because of the social engineering

component. Dictionary attacks are designed to target common patterns users create when

constructing a password. For this project, an effort was made to only utilize dictionary lists that

had been tested and analyzed in other studies by cyber security professionals.

 Two dictionary attack word lists were used with the password cracking tool. First, the

rockyou.txt word list was used when performing quicker password attacks. This word list is

included on Kali Linux distributions, and widely available online. In a study titled Cracking More

Password Hashes with Patterns, Engineering professor, Emin Tatli, from Istanbul Medipol

University, Turkey, writes that this word list surfaced because a data breach of a website,

rockyou.com (1656). Tatli writes that "In the past, security researchers did not have such a large

real-life resource for password analysis. Therefore, the published 32.6 million real-life

passwords have become very valuable data for security experts and researchers" (1656).

5

 The rockyou.txt word list contains 14,344,188 unique passwords. The password cracking

tool developed for this project contains a dictionary analysis module that calculates the total

occurrences of common special characters,

and determines word length distribution of

the words in the dictionary. Figure 2 is an

image from the dictionary analysis tool. All

of the charts were generated

programatically using Java.

 The second word list used to perform dictionary attacks with is called Rocktastic.txt.

The word list is curated by the cybersecurity firm Nettitude. While as the RockYou work list

contains 14 million passwords, the Rockastic word list contains over 1.1 billion. According to

the dictionary analysis tool, the most common word length in the Rocktastic word list was 10,

followed by 9, then 11. In contrast, the most common word lengths in the shorter RockYou

word list, were 8, 7, and 9. These findings suggest that the Rocktastic word list may be more

effective at cracking longer passwords.

Multi-threading
 Multi-threading is an integral piece of the password cracking tool. The use of multi-

threading allows the password cracking tool to crack more than one password at a time. It was

imperative when developing the graphical user interface for this tool that all password cracking

be performed on a separate thread than the JavaFX application thread (the GUI thread). If this

is not the case, the user interface would completely freeze up.

Figure 3 Rockyou.txt dictionary analysis tool.

6

 An additional challenge was that the user interface needed to update in real time as

passwords were cracked. According to the JavaFx Documentation, "The JavaFx scene graph,

which represents the graphical user interface of a JavaFX application, is not thread-safe and can

only be accessed and modified from the UI thread." This problem can be solved by using the

JavaFX concurrent package. The JavaFX documentation says that "The JavaFX concurrent

package leverages the existing API by considering the JavaFX Application thread and other

constraints faced by GUI developers". The JavaFX concurrent package is the backbone for most

of the multi-threading techniques implemented in the password cracking tool. It contained

useful properties for updating progress bars, and other GUI components; however, it had its

limitations, and provided many challenges when designing the user interface that updated in

real time.

 Two multi-threading techniques were implemented in the password cracking tool to

maximize the number of passwords the tool could crack at a time. The tool has the capability to

check an n number of passwords at a time where n is a user specified number of passwords.

The program will spawn one thread to check each password. That thread can in turn, spawn

more threads to search from a specific location in a word list. For example, one thread could

iterate over the first fourth of the dictionary, another could start searching from three fourths

into the list, and so on. This method proved costly in some instances because it takes time to

navigate to a certain position in a word list (in this case, the dictionary lists used to crack

passwords were stored in a file). Consideration was given to loading the word lists into an in-

memory data structure like a hash table instead of reading from a file, but this would have been

unrealistic for the Rocktastic word list which contained over one-billion words. Furthermore,

7

development of this project was largely constrained to a laptop and its limited memory, as

frequent interaction with the server over a VPN proved slow and difficult to work with.

 The multi-threading algorithms used in this project dramatically increase the speed at

which the password cracker can attempt to crack passwords. The current algorithm used is

strong but has some areas for improvement that could further increase the speed of the

software. Ultimately, the current iteration of the password cracking tool is both fast and

provides data in real-time to the user that is both accurate and informative. A good foundation

has been built for future additions to the project.

Hash Compatibility

 The current iteration of the password cracking tool only works with SHA-1 password hashes and

does not expect that the hashed passwords will be salted. This is a shortcoming compared to John the

Ripper. John the Ripper can recognize the type of a password hash and hash its dictionary attack list

accordingly. This should be an improvement made in later versions of the password cracking tool. The

strategy design pattern is an object-oriented design pattern that would be helpful in implementing this

functionality.

Adding Project Dependencies

 Much of the password analysis displayed on the user interface of the password cracking

tool was created from scratch. There is functionality to track the lengths of cracked passwords,

the total passwords containing a number, and so on. In addition, the project integrates some

existing software that measures password strength. Zxcvbn4j is the name of a popular

password strength measuring tool on Git Hub. According to the project’s ReadMe file, a typical

8

use case for the Zxcvbn4j tool is for a password strength meter typically found on a login page.

The first iteration of this project was built with JavaScript, then reproduced in languages such as

Java and Python. The project measures a password's strength by estimating the total number

of guesses it would take to crack the password and assigns a password a number from zero to

five depending, with zero being the weakest password. How does the software calculate the

total number of estimated guesses to crack a password? According to their ReadMe file,

"Through pattern matching and conservative estimation, it recognizes and weighs 30k common

passwords, common names and surnames according to US census data, popular English words

from Wikipedia and US television and movies, and other common patterns like dates,

repeats(aaa), sequences (abcd), keyboard patterns (qwertyuiop), and I33t speak." This software

is already implemented by various organizations including Jet Brains hub.

 The Zxcvbn4j library integrated smoothly into the password cracking software as a

Maven Dependency and provides valuable information to the user. Utilizing this library, the

password cracker can aggregate the strength of each cracked password, display the estimated

crack time, identify patterns such as repetition, give the user feedback as to how to increase

their password strength, and even let the user know what other cracking dictionaries their

password may be found in. This information is displayed on the user interface and can be

written to a file along with the cracked password. In summary, integrating this software into

the project added valuable feedback about the passwords that were cracked, while not

dramatically compromising the speed of the password cracking program.

9

GPU Programming in Java

 One of the goals for this project was to utilize the high-powered server I was given

access to for this project to its full capacity. Max CPU utilization on the server was reached by

spawning thousands of threads to attempt to crack multiple passwords at the same time. While

the password cracker was able to utilize the server's full CPU capacity, the attempt to access

the processing power of the GPUs proved more challenging. When first run on the server, the

password cracking tool did not utilize the GPUs on the machine. JCuda, TornadoVM, and Aprapi

were some of the libraries used when trying to execute Java code on the GPU.

 The Aprarpi framework was the closest I got to executing code on the GPU for this

project. The Aparapi website describes Aparapi as an "Open-source framework for executing

native Java code on the GPU." This promising statement was undercut when reading the

Aparapi documentation and discovering that, "Only the Java primitive data types, boolean,

byte, short, int, long, and float and one-dimensional arrays of these primitive data types are

supported by Aprarpi." After writing some code using the Aparapi framework, it became clear

that any attempt to use a Java object would cause your program execution to fall back to the

CPU. Regardless, using the Aprarpi framework, I was able to implement a prime number

checker that utilized a GPU device. It became clear that the use of Aprapi framework for the

password cracker was not feasible or intended. It was also evident by reading the

documentation and looking at example code that frameworks like Aparapi, and Tornado VM

were designed for repetitive calculations with primitive data types and did not include the

functionality to work with objects. Similarly, a framework like Jcuda proved too difficult to

10

implement, and involved many low-level programming concepts that I did not have the

knowledge to understand. Further discussion with my project advisor suggested that the

inability to use these frameworks for the password cracker, was not a limitation of these

frameworks, but rather a limitation of the capabilities of GPU programming.

Finding Passwords to Crack

 To perform tests on the password cracking software, I needed some passwords to crack.

I built a password generation tool to aid in this purpose. It is integrated into the password

cracking software. The password generation tool allows you to generate passwords from a

variety of sources. Users can generate passwords from a list of dictionary words, names, or a

random combination of characters, and have the option to append or prepend a random

number of characters to the strings generated from the word list. The user of the password

cracker may generate a password list with their tool or select a hashed or un-hashed version of

their own. Another password source I used was haveibeenpwned.com where the site says their

word list contains "555 ,278,657 real world hashed passwords previously exposed in data

breaches." passwords previously exposed in data breaches,278,657 real world passwords

previously exposed in data breaches

11

Testing and Results
Laptop Vs. Server Performance Test

To compare the speed of the server with the speed of a standard computer, identical tests were
performed on a laptop with an I7 processor and 8 logical processors, and the server, which contained 28
CPU cores.

Dictionary attack List: Rockyou (14,344,188 words)

Password List: Generated with my password generation tool

• 500 human names with no characters appended or prepended
• 500 human names with 2 random numbers appended
• 500 random dictionary words with no characters prepended or appended
• 1000 dictionary words with one random number appended
• 1000 dictionary words with one random letter, number, or special character prepended

Threads: Both the laptop and server were configured to crack 100 passwords at a time.

Laptop CPU Utilization

Linux Server CPU Utilization

Laptop: Time to Complete

44 minutes, 2 seconds

Server: Time to Complete

7 minutes, 17 seconds

 These results illustrate the significant performance increase in the server when cracking
passwords. In this case, the server was 83.46% faster than the laptop when identical tests were
performed. While the laptop easily reached 100 percent CPU utilization, the server did not expend all its
resources. 543 or 15.51 percent out of the 3,500 passwords were cracked.

12

Rockyou vs Rocktastic word list.

 Using the same generated password list used in the laptop and server performance test above,
the test was repeated, only this time using the Rocktastic dictionary attack list containing over one
billion hashed passwords. Similarly, only 100 threads were spawned on the server to replicate the
previous test with the smaller Rockyou word list.

 The results, shown below, indicate that the larger Rocktastic word list cracked 955, or 75.87%
more passwords than the rockyou word list. This is expected, considering the size difference between
the two-word lists. While the Rocktastic word list was able to crack more passwords, the dictionary
attack took 500.8 minutes, or 6764.8% longer to complete than when the Rockyou word list was used.
This is in part due to the fact that only 100 threads were spawned to replicate the test above, and also a
result of the massive size of the Rocktastic word list. In summary, these results demonstrate that the
Rocktastic word list comes with a large time trade-off but is capable of cracking more passwords.

Figure 5: Side by side comparison of the same test performed with different word lists.

0 200 400 600 800 1000

Total Words Cracked

Time To Complete (min)

Total Words Cracked Time To Complete (min)
Rocktastic 955 508.2
Rockyou 543 7.4

Rocktastic vs Rockyou Word List

Rocktastic Rockyou

Figure 4: Password analysis from the 543 cracked passwords. Screenshots are taken from the dictionary attack GUI.

13

100,000 Passwords from the PwnedPasswordList

 For this test I extracted one-hundred-thousand passwords from the pwnedPasswordList and ran
a dictionary attack on the Linux server. The rockyou dictionary was used for this test, and the program
was configured to spawn two-thousand threads at once.

Time to Complete Attack: 21 Minutes, 45 seconds.

Total Cracked Passwords: 92,810

Total Not Found: 7,190

 The results below utilize some of the feedback generated by the user interface of the password
cracking tool. The results of this dictionary attack confirm that the hashed passwords in the
pwnedpassword list are weak and would not meet the password requirements generated by a website
or organization. For instance, 33% of the cracked passwords from the list contained letters only, and no
occurrence of numbers or special characters. A significant 21% of the cracked passwords were
comprised entirely of numbers. When creating these passwords users likely may have based these
numerical passwords off phone numbers or dates of birth. The string-number password combination
was also identified by the password cracking tool as a common password pattern. As indicated in the
results set below, the string number combination is where a password is comprised of a string of any
length, followed by any number of a random length. Looking at the individual passwords that were
cracked revealed that this pattern was commonly used to append characters to someone’s name (i.e.
Isaiah123).

Passwords Including Letters Only 30,863
Passwords Comprised Entirely of Numbers 20,560

3 or more repeating characters ex: Isaiah111 2490
String-Number Combination

(a string of any length followed by a number of any length)
36741

By integrating the password strength measurer into the password cracking code, the password cracking
tool was able to calculate the
password strength of each
cracked password, where
password strength is the
estimated number of guesses
to crack a password. The
results of this dictionary
attack illustrate that most of
the cracked passwords has a
password strength of 1. A
security analyst could use the
password strength tool for
testing out the efficiency of

7981

79202

4661 923 43
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

Strength: 0 Strength: 1 Strength: 2 Strength: 3 Strength: 4

Password Strength Of
PwnedPassword List

14

their organization’s password policy.

Conclusion

 The password cracking tool developed for this project meets the original objectives of being

both a fast password cracker that also provides informative feedback to a user about their cracked

passwords by integrating new and existing software. Some areas of expansion for this project include

extending the types of hashes and encryption types that are compatible with the password cracking

tool. In addition, new ways of writing Java code that can be executed on a GPU should be explored to

maximize the speed and efficiency of the password cracking tool.

Demonstration

A demonstration of the dictionary attack software is available in a YouTube video (link below).

https://www.youtube.com/watch?v=GsvxYYNS3g0

https://www.youtube.com/watch?v=GsvxYYNS3g0
https://www.youtube.com/watch?v=GsvxYYNS3g0

15

Works Cited

Bošnjak, L., et al. "Brute-Force and Dictionary Attack on Hashed Real-World Passwords."
Brute-Force and Dictionary Attack on Hashed Real-World Passwords - IEEE Conference
Publication, 2018, ieeexplore.ieee.org/document/8400211.

E. İ. Tatlı, "Cracking More Password Hashes With Patterns," in IEEE Transactions on
Information Forensics and Security, vol. 10, no. 8, pp. 1656-1665, Aug. 2015.

Fedortsova, Irina. “Release: JavaFX 2.1.” Concurrency in JavaFX | JavaFX 2 Tutorials and
Documentation, 2 June 2012, docs.oracle.com/javafx/2/threads/jfxpub-threads.htm.

"Getting Started." Aparapi, aparapi.com/introduction/getting-started.html.

"Jcuda.org." Java Bindings for CUDA, www.jcuda.org/.

Nulab. “Nulab/zxcvbn4j.” GitHub, Nulab Inc, 19 Dec. 2019, github.com/nulab/zxcvbn4j.

Nettitude Labs. "Rocktastic: a Word List on Steroids." Nettitude Labs, Nettitude Labs
Https://Labs.nettitude.com/Wp-Content/Uploads/2019/10/NETT_LABS_LOGO-New.png,
11 Oct. 2018, labs.nettitude.com/blog/rocktastic/.

P.W.D. Charles, Aparapi, (2013), GitHub repository, https://github.com/charlespwd/project-title

http://www.jcuda.org/
http://www.jcuda.org/
https://github.com/charlespwd/project-title
https://github.com/charlespwd/project-title

	Overall Goal
	Overall Goal
	User Interface Vs. Command Line
	User Interface Vs. Command Line
	Designing A Dictionary Attack
	Designing A Dictionary Attack
	Designing A Dictionary Attack
	Multi-threading
	Multi-threading
	Hash Compatibility
	Hash Compatibility
	Adding Project Dependencies
	Adding Project Dependencies
	GPU Programming in Java
	GPU Programming in Java
	GPU Programming in Java
	Finding Passwords to Crack
	Finding Passwords to Crack
	Laptop Vs. Server Performance Test
	Laptop Vs. Server Performance Test
	Rockyou vs Rocktastic word list.
	Rockyou vs Rocktastic word list.
	100,000 Passwords from the PwnedPasswordList
	100,000 Passwords from the PwnedPasswordList
	100,000 Passwords from the PwnedPasswordList

