Perceived Environments Impact on Exercise Using Virtual Reality

Quarantine Edition

Presentation by Aaron Shepherd, Abbey Hammann, Alaina Tarr, Andy Miller, Kendall Lyman, Maya Pentecost, Matthew Horsley, Michael Bacigalupo, Robbie Lynch.

Background

- Using Virtual Reality (VR) during exercise has been shown to have a positive impact
 - Overall performance
 - \circ Endurance
 - \circ Motivation
 - \circ $\,$ Some evidence of decreases in RPE1 $\,$
- Previous research has focused on VR effects during aerobic exercise
 - \circ $\,$ Some research on resistance exercise VR in clinical therapy setting
 - Limited research on VR effects on performance during resistance training for healthy individuals

Original Plan

- "What effects do motivational and environmental cues have on an individual's performance?"
- Cycle ergometer
 - \circ watts and distance
- 5-10 minute trials
 - \circ Baseline
 - VR Headset
 - Relaxing and action/fast bike scenes in 360-degree motion
 - $\circ \quad \text{Audio cues} \quad$
 - positive or negative encouragement
- Perceived motivation (1-10 scale), RPE (6-20 scale)

Research Question

Does the environment perceived by the individual have an effect on the number of bicep curls completed?

Subject Information:

	Age (years)	Weight (Ibs)	Curling Weight (lbs)
Male (n=4)	20.5	191.25	15
Female (n=6)	22	138.67	10

Methods

Baseline Trial:

- Resting heart rate (HR) was taken
- Subject was instructed to perform as many bicep curls as possible
 - Trial was timed, number of reps were recorded
 - Started with dominant hand
 - Weight: 10lbs Females, 15lbs Males
- Immediately after trial HR was recorded
- Motivation level on a scale of 1-10 and RPE were recorded
- Subject rested for at least 1.5 minutes or until HR was within 5 bpm of the original RHR
- Repeat with non-dominant hand with the same components recorded

Rate of Perceived Exertion (RPE) Scale

BORG RPE	MODIFIED RPE	BREATHING	TRAINING ZONE	% of MHR*	EXERCISE TYPE
6	0	No Exertion	1	50%-60%	Warm up
7	U				
8	1	Very Light			
9					
10	2	Deeper but comfortable breathing. Able to hold a conversation.	2	60%-70%	Recovery
11	2				
12	3				
13	3	Aware that breathing is harder; able to	3	70%-80%	Aerobic
14	4	talk but difficult to hold conversation			
15	5	Starting to breathe hard and getting	4	80%-90%	Anaerobic
16	6	uncomfortable			
17	7	Deep and forceful breathing.	5	90-100%	V0 ² Max
18	8	Uncomfortable and not wanting to talk			
19	9	Extremely hard			
20	10	Maximum exertion			

Repeat at 48 hours under new condition

Methods cont.

- 3 environmental conditions:
 - \circ None: baseline
 - Action: Marvel's Captain America: Civil War
 - Relaxing: National Geographic's Lions
- Qualitative Data Collection
 - Do you prefer to listen to music while working out?
 - \circ $\,$ Do you watch anything while working out?

Relaxing VR Scene: National Geographic's Lions

Action VR Scene: Marvel's Captain America: Civil War

Data - Repetitions ND and D arm

comparing baseline v action

- comparing action v relaxing

Percent Change	Average F	Average M
Baseline vs Action D	14.6	15.6
Baseline vs Action ND	11.9	11.0
Baseline vs Relaxing D	-2.0	2.2
Baseline vs Relaxing ND	-5.1	1.2

Data - Motivation

* Males versus females action = p < 0.05
* Males relaxing versus baseline = p < 0.05

Data - Motivation vs. Reps

Results

- The action scene resulted in more repetitions completed than baseline and relaxing scenes when comparing same arm
- Significant increase in motivation between men and women when action scene is perceived, regardless of arm used
- Significant difference for all subjects in baseline vs. action (†) and action vs. relaxing (†)
 - No significance for baseline vs. relaxing (=)
- Significant difference for males only in baseline vs. action ([↑]), baseline vs. relaxing ([↑]), action vs. relaxing ([↓])
- Significant difference for females only in baseline vs. action ([†]) and action vs. relaxing ([↓])
 - No significance for baseline vs. relaxing (=)

Group Discussion

- Subjects asked if they preferred to listen to music while working out
 - $\circ\quad Everyone \ answered \ yes$
- Subjects asked if anyone had watched something, either on television or their phones.
 - \circ Most subjects said they watch whatever is on the TV at the gym
- Subject 1: "I watch a show on Netflix while I bike, but not something I have to pay really close attention to."
- Subject 8: "I only listen to music while I lift but I watch sports on the TVs while I run."

Conclusion

- Action creates a difference
- Relaxation didn't create a difference
- Use of VR may be dependent on the specific scenes involved
- Limitations...
 - Limited exercise opportunities because of goggles
 - Small population size could've made some things that weren't significantly different. For example dominant arm non significance.
- Future
 - \circ See the role of personality
 - Using different weights for different body weights

References

[1] Chen, C.-H., Jeng, M.-C., Fung, C.-P., Doong, J.-L., & Chuang, T.-Y. (2009). Psychological Benefits of Virtual Reality for

Patients in Rehabilitation Therapy. Journal of Sport Rehabilitation, 18(2), 258-268. doi: 10.1123/jsr.18.2.258

[2] Sarıkabak, M., Yaman, Ç., Tok, S., & Binboga, E. (2017). The Effects of Positive and Negative Feedback on Maximal Voluntary Contraction Level of the Biceps Brachii Muscle: Moderating Roles of Gender and Conscientiousness. Perceptual and Motor Skills, 124(1), 118–130. https://doi.org/10.1177/0031512516673752

https://www.youtube.com/watch?v=zcbeZ9QxBjA

https://www.youtube.com/watch?v=sPyAQQklc1s