Mosquito Fish Ethinylestradiol and Testosterone Exposure Experiment

Ariana Berrios

Goals

- Learn the effects of Estrogen and Testosterone
- Replicate accidental spills that can occur in the environment
- Pave the way for future studies
- Give back to mother nature

Introduction

- Scientific name Gambusia Affinis
- Mosquitofish are viviparous
- Live in freshwater systems
- Diets are very diverse but mainly include Mosquito larva
- Behavior is aggressive towards Medaka (Japanese fish)
- Morphological changes

Figure 1 Female mosquitofish top left, and male mosquitofish bottom right

Procedure-3 Day Behavioral

- Control, 50 ng/L T2, 50 ng/L EE2
- Fed 0.5 mL brine shrimp daily
- 1 female mosquitofish per replicate
- All pregnant
- Controlled light conditions
- Measure weights & standard length of body
- Euthanized with MS22

Figure 2: Standard length measured from tip of mouth to just before the tail fin

Figure 3: Housing Station

Behavior Recording

- Timed interaction for 5 minutes each
- Female least killifish

Results

Procedure-7 Day Morphological

- Control, 5 ng/L T2 & EE2, 50 ng/L T2 and EE2
- Fed 0.5 mL brine shrimp daily
- 1 female mosquitofish per replicate
- Some pregnant, some not pregnant
- Controlled light conditions
- Measure length of anal fins, weights, & standard length

Results

Discussion

Decrease in standard lengths Exposure to T2 at 50 ng/L induced birth Estrogen exposure caused increased aggression Morphological Decrease in standard lengths

Conclusion

- EE2 and T2 may have devastating effects on mosquitofish populations
- As EE2 and T2 increase, the body length and anal fin size decrease
- High levels of T2 induce early birth in pregnant females

Future Research

- Effects of T2 on pregnant females
- Longer studies for behavior
- Histology
- Formulate models to determine how organism level effects translate into population level impacts

Citations

Hieu M. Dang, Yoshihiko Inagaki, Yuka Yamauchi, Takaski Kurihara, Cong H., Yutaka Sakakibara. Acute Exposure to 17α-Ethinylestradiol Alters Aggressive Behavior of Mosquitofish (Gambusia affinis) Toward Japanese Medaka (Oryzias latipes) pp. 643-748. Published 2017 Feb 3. https://link.springer.com/article/10.1007/s00128-016-2016-z

Xeugeng Wang, Diamond Hill, Donald E. Tillitt, Ramji K. Bhandari. Bisphenol A and 17α-ethinylestradiol-induced transgenerational differences in expression of osmoregulatory genes in the gill of medaka (Oryzias latipes). Pp. 227-234. Published 2019 June. https://www.sciencedirect.com/science/article/pii/S0166445X19301948

Emmanuelle Vulliet, Marine Falletta, Pedro Marote, Thierry Lomberget, Jean-Olivier Païssé, Marie-Florence Grenier-Loustalot. Light induced degradation of testosterone in waters. Pp. 3554-3559. Published 2020. https://www.sciencedirect.com/science/article/pii/S0048969710004584