

Intelligent Autonomous Systems Research Lab

Purpose of Research

To learn the instrumental error of ultra-wideband (UWB) sensors, reduce error through data filtering, and ultimately develop an accurate positioning system.

Positioning System (PS)

The PS discussed uses 3 UWB sensors as anchors to locate the 4th sensor called Given the anchors' tag. distance measurements from the tag and their locations, the system obtains the tag's position in x and y directions using *trilateration*.

UWB Sensor

in this research is the Decawave used sensor DWM1001.^[1]

Specification	Value	Unit	
Location Accuracy	< 10	cm	DWM1001
Max Range	60	m	
Max Location Rate	10	Hz	62 mm
Min Location Rate	0.0167	Hz	
Power Supply	2.8-3.6	V	
Data Rate	6.8	Mbps	
UWB Channel 5	6.5	GHz	43 mm

Conclusions

Both moving average and Savitzky-Golay filters show a great performance to lower the measurement error for a stationary tag localization. However, both filters are not adaptive to motions leading to time delays, which is unfavorable in real-time positioning for moving objects. A dynamic filtering approach, such as the extended Kalman filter, is planned to be considered to resolve the issues.

References

[1] Decawave. MDEK1001 Kit User Manual Module Development &

Evaluation Kit for the DWM1001, 1st ed. 2017.

[2] D. Kim, S. Yang, and S. Lee, "Rigid Body Inertia Estimation Using Extended Kalman and Savitzky Golay Filters," Mathematical Problems in Engineering, Vol. 2016, pp. 1-7, Jun. 2016.

[3] D. Kim, "Efficient Navigation for Unmanned Agents in Sparse Wireless Sensor Networks," Transactions of Japan Society for Aeronautical and Space Sciences, Vol. 64, No. 5, pp. 283-287, Sep. 04, 2021.

Reducing the Noise Effects in Ultra-Wideband Sensors for Developing a Robust Positioning System

Author: Tri Huu Nguyen Advisors: Donghoon Kim, PhD and Anirudh Chhabra

Experimental Results of MAF and SGF Implementation

σ_{x}	σ_y
0.01522	0.01180
0.00589	0.00421
0.00770	0.00574
	0.01522 0.00589

$$\begin{bmatrix} \frac{1}{2} \\ (D_{t-i} + D_{t+i}) \end{bmatrix}$$

$$\frac{1}{a_i(D_{t-i} + D_{t+i})}$$

It can be rewritten as a second order equation: $(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2 = d_i^2$ Manipulating the equation yields the following linear equation in x and y:^[2] $\begin{bmatrix} z_1 - z_0 \\ z_2 - z_1 \\ z_3 - z_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{2} \begin{bmatrix} (d_1^2 - d_0^2) - (R_1^2 - R_0^2) \\ (d_2^2 - d_1^2) - (R_2^2 - R_1^2) \\ (d_3^2 - d_2^2) - (R_3^2 - R_2^2) \end{bmatrix}$ linear equations can be solved as $\mathcal{I}_{l} \mathcal{I}_{l}$ $\boldsymbol{r} = (A^T A)^{-1} A^T \boldsymbol{b}$

Γχ	$x_1 - x_0$	$y_1 - y_1$	$v_0 Z$
X	$x_2 - x_1$	$y_2 - y_2$	$v_1 z$
λ	$x_3 - x_2$	$y_1 - y_1 - y_2 - y_2 - y_3 - y_3 - y_3 - y_3$	$v_2 Z$
in which $R_i^2 =$			

University of CINCINNATI

Experiment Settings and Trilateration

Anchors' Position	$[x_i, y_i]$
Anchor I	[0, 0]
Anchor II	[2.72, 0]
Anchor III	[1.36, 2.72]
The distance measur	rements from the tag
	rements from the tag
to each anchor:	
to each anchor: $ r - r $	$ _i = d_i$
to each anchor: $ r - r $	$ d_i = d_i$ is the tag position,

and d_i is the distance between the tag and *i*-th anchor.