InSRL

Intelligent Autonomous Systems Research Lab

Purpose of Research

To learn the instrumental error of ultra-wideband (UWB) sensors, reduce error through data filtering, and ultimately develop an accurate positioning system.

Both moving average and Savitzky-Golay filters show a great performance to lower the measurement error for a stationary tag localization. However, both filters are not adaptive to motions leading to time delays, which is unfavorable in real-time positioning for moving objects. A dynamic filtering approach, such as the extended Kalman filter, is planned to be considered to resolve the issues

References

[1] Decawave. MDEK 1001 Kit User Manual Module Development \& Evaluation Kit for the DWM1001, st ed. 2017.
[2] D. Kim, S. Yang, and S. Lee, "Rigid Body Inertia Estimation Using Extended Kalman and Savitzky Golay Filters," Mathematical Problems in Engineering, Vol. 2016, pp. 1-7, Jun. 2016.
3] D. Kim, "Efficient Navigation for Unmanned Agents in Sparse Wireless Sensor Networks," Transactions of Japan Society for Aeronautical and Space
Sciences, Vol. 64, No. 5, pp. 283-287, Sep. 04, 2021.

Model with Moving Average and Savitzky-Golay Filter

Experiment Settings and Trilateration

| Anchors' Position | $\left[x_{i}, y_{i}\right]$ |
| :---: | :---: | :---: |
| Anchor I | $[0]$ |
| Anchor II | $[2,76,0]$ |
| Anchor III | $[1.36,2.72]$ |

The distance measurements from the tag to each anchor:

$$
\left|\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}\right|=d_{i}
$$

where $\boldsymbol{r}=(x, y, z)$ is the tag position, $\boldsymbol{r}_{\boldsymbol{i}}=\left(x_{i}, y_{i}, z_{i}\right)$ is the i-th anchor position and d_{i} is the distance between the tag and i-th anchor.
It can be rewritten as a second order equation:

$$
\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}=d_{i}^{2}
$$

Manipulating the equation yields the following linear equation in x and $y:{ }^{[2]}$

$$
\left[\begin{array}{lll}
x_{1}-x_{0} & y_{1}-y_{0} & z_{1}-z_{0} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{2} & y_{3}-y_{2} & z_{3}-z_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
\left(d_{1}^{2}-d_{0}^{2}\right)-\left(R_{1}^{2}-R_{0}^{2}\right) \\
\left(d_{2}^{2}-d_{1}^{2}\right)-\left(R_{2}^{2}-R_{1}^{2}\right) \\
\left(d_{3}^{2}-d_{2}^{2}\right)-\left(R_{3}^{2}-R_{2}^{2}\right)
\end{array}\right]
$$

in which $R_{i}^{2}=x_{i}^{2}+y_{i}^{2}+z_{i}^{2}$. The linear equations can be solved as $r=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}$

Experimental Results of MAF and SGF Implementation

Dispersion Comparison

Standard Deviation	$\boldsymbol{\sigma}_{\boldsymbol{x}}$	$\boldsymbol{\sigma}_{\boldsymbol{y}}$
Measurements	0.01522	0.01180
MAF	0.00589	0.00421
SGF	0.00770	0.00574

- SGF increases the accuracy of the system by nearly 2 times
- MAF is around 1.5 times better than SGF, and it can increase the
accuracy by nearly 3 times.
- Both MAF and SGF can cause delays in estimations.

Position of the Tag

Position Error of the Tag

