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The integration of rapidly oscillating 

functions is of interest across a variety of 

fields. A numerical approach is often the best 

method for integrating these functions1,2. Our 

research is focused on finding an efficient 

method of approximation. The method 

extracts a first order oscillation via a Taylor 

polynomial expansion. A comparison of 

errors is made between the new method and 

Simpson’s rule.

The particular integral of interest in this 

project was 𝑎
𝑏
𝑓(𝑥)𝑒𝑖𝜔𝑔(𝑥)𝑑𝑥, where f(x) 

and g(x) are both functions and ω is a positive 

integer. 

Uses for this integration technique arise in the 

study of  Fourier Series whose applications 

are found in but not limited to: 

• heat transfer of material properties

• recording music as the sum of frequencies

• revenue streams that have an annual, daily, 

or hourly pattern

• image processing used in MRI’s3

The efficacy of our approximation was 

calculated by a comparison to Simpson’s rule 

to the exact known value for the integral of 

our test function. The resulting plot shows the 

error on a logarithmic scale for both ours and 

Simpson’s rule for an ω value of 50:

The error chart is mostly noise for less than 

approximately 50 panels. This is due to the 

approximating panels being used being too 

wide to give any meaningful results. This 

required number of panels before 

convergence depends primarily on ω.

Here is the same plot with an ω value of 90.

Future work will be focused on two methods 

of improvement.

One route is to increase the accuracy of the 

approximation through higher order 

approximations for the f(x) term as well as a 

2nd degree Taylor polynomial approximation 

for the g(x) term.

Another viable route of increasing the 

efficiency of our method is to streamline the 

algorithm that computes the integral.

From our comparison to Simpson’s rule using
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it can be seen that our method is 66% more 

accurate than Simpson’s rule for the same 

number of panels.

We believe that this improvement is because 

we maintain the oscillatory element 

(𝑒𝑖ω𝑔
′(𝑚)(𝑥−𝑚)) in our approximation.

The integral 𝑎
𝑏
𝑓(𝑥)𝑒𝑖𝜔𝑔(𝑥)𝑑𝑥 can be exactly 

integrated for a variety of functions.

These exactly integratable functions are of 

key importance as they allow us to easily 

calculate error in our own approximation as 

well as speed of convergence against existing 

methods. The test integral we chose was
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Whose real part graphed on the xy-plane with 

ω=60 is:

The first step in our approximation is to 

create a first degree Taylor polynomial of g(x) 

under the form: 
𝑔 𝑥 = 𝑔 𝑥 + 𝑔′ 𝑚 𝑥 −𝑚 − 𝑔′ 𝑚 (𝑥 −𝑚)

Note that m is the midpoint of the integral 

calculated by 
𝑎+𝑏

2

And then to approximate the f(x) term along 

with the 𝑔 𝑥 −𝑔′ 𝑥 (𝑥 − 𝑚) term from the 

g(x) approximation to a quadratic similar to

Simpson’s rule, to a general form of 

𝛼 + 𝛽𝑥 + 𝛾𝑥2 e𝑖𝜔𝑔
′ 𝑚 𝑥−𝑚

Which is a function that can always be 

exactly integrated.

Conclusions
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