Fake It Till You Make It: Synthetic Generation of Pediatric Liver Ultrasound Images using Generative AI models

Phuc Ngoc Thien Nguyen¹, Smruti Deoghare², Andrew T. Trout³, Jonathan R. Dillman³, Vasundhara Acharya⁴, V. B. Surya Prasath^{2,5}

¹Department of Biomedical Engineering, University of Cincinnati, ² Division of Radiology, CCHMC, ³Department of Electrical Engineering and Computer Science, Rensselaer Polytechnic Institute, NY, ⁵Departments of Pediatrics, Electrical Engineering and Computer Science, University of Cincinnati

INTRODUCTION

- Artificial intelligence (AI) has experienced \bullet extensive and successful applications in the field of healthcare due to advancements in deep learning (DL) and the availability of high-quality biomedical datasets.
- Despite ultrasound (US) being a common imaging modality used as a first step for various diagnoses, identifying a large enough dataset sufficient to train DL models remains a challenge.
- With increasing liver related diseases in pediatric population, but limited by the number of available images, we propose using "Generative Adversarial Networks" (GANs) to create synthetic US pediatric liver images with high accuracy. These would make the extant dataset more robust and offer a better input for training the "data greedy" AI models.

OBJECTIVES

- 1. Generate synthetic pediatric liver ultrasound (US) images using GANs.
- 2. Compare the performance of different GAN model frameworks and identify the top performing model.
- 3. Evaluate the ability of GANs to augment pediatric liver stiffness classification from US images based on shear wave elastography (SWE) thresholds.

CURRENT WORK

• Experiment with other GAN models in the literature and perform comprehensive model performance comparison.

• Created an easy-to-use graphical user interface (GUI) that allows experts to identify the real US images from the synthetic generated by GAN models.

 Expand GAN with US modality specific constraints, for e.g., SpeckleGAN [4], domain specific speckle pattern layer to simulate US images.

 Augmentation of GAN generated synthetic US shear wave elastography (SWE) images in training data for pediatric liver stiffness prediction with deep convolutional neural network (CNN) model-based classification.

REFERENCES

1. A. Radford, Alec, L. Metz, S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434, 2015.

2. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville. Improved training of wasserstein GANs. NeurIPS, 2017.

3. T. Karras, S. Laine, T. Aila. A style-based generator architecture for generative adversarial networks. IEEE TPAMI, 2021.

4. L. Bargsten A. Schlaefer A. SpeckleGAN: A generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing. IJCARS, 2020.

ACKNOWLEDGEMENTS

The authors would like to thank Samjhana Thapaliya, Leah Gilligan, Division of Radiology, CCHMC for their help in the collection and curation of the in-house dataset, and the BMI Research IT, CCHMC for providing technical assistance in using the NVIDIA A100 GPUs/Cluster. Funding by ARC, CCRF, CCHMC.

www.prasathlab.com

@prasathLab