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Background

Within the sphere of space exploration and discovery (SED) research exists a need for
robust, interactive, and easy-to-use 3D visualization tools that assist in different aspects of space
related science. Virtual reality, augmented reality, and mixed reality, conjointly known as
extended reality, is a new emerging technology that focuses on creating immersive 3D
experiences. With the rapid advancements in these extended reality technologies, SED can
begin to incorporate these technologies to effectively visualize the different aspects of space
science and develop further research. This research explores the virtual reality branch of
extended reality and how it can be used to create an accurate, interactive, and multi-disciplinary
3D VR application with a multiple-use case and the specific intention to not be limited to a
single field or area. Some proposed fields include, but are not limited to, astronomy, astrometry,
early childhood — higher level science education, and aerospace. Some specific use cases
include using the application as a learning tool for children to learn about the solar system in a
classroom setting, ranging to using the application as an astronomy tool to view different
metadata associated with celestial objects in a work or professional setting. The design choices
that were chosen caters to the “interactive” aspect of this application, giving the user full
control of the 3D environment to suite their specific needs. This includes functionality such as
teleportation, scaling/time manipulation, as well as object highlighting. It is important to note
that, although this application promises to reach useability within certain fields under the space
science umbrella, there are other areas where this application needs more work to be used
effectively; however, the current framework allows for this further development to occur with

no issues with the concept of modules, which will be discussed later.

Prior work and research in this area remain in the early stages of development. After
careful literature review and surveying sources related to this topic, multiple instances show the
creation of similar 3D models of space related objects. One example involves NASA’s “Eyes on
exoplanets”, powered by NASA’s Exoplanet Archive, which presents a 3D universe model
containing an approximate 1000 potential habitable exoplanets (“NASA’s eyes: Eyes on
exoplanets,” 2018). There are a few things to consider: firstly, NASA’s model contains data on

purely exoplanetary objects. In this research, however, it was important to include data



involving multiple different types of celestial objects such as planets, moons, and stars which is
vital for the wide variety of use-cases that this application will serve. This also means that in the
example, proper or “complete” data is available for approximately 1000 objects (exoplanets),
whereas in this research, proper data is available for millions of objects (planets, stars, moons,
asteroids, satellites, etc.), given by databases publicly available. Secondly, NASA’s model is run
through a webpage, which is useful for accessibility and low hardware specification
requirements, but undesirable in other cases due to the (a) low fidelity design and (b) no spatial
awareness, meaning there is no indication of scale and distance of these different objects. In
this research, the application is a complete stand-alone, meaning the fidelity design can
increase as hardware specifications increase, and because this application is taking advantage of
virtual reality, scale, distance, and other spatial indicators can be properly identified. Compared
to the NASA model which targets the single problem of exoplanetary data, this research targets
the question of expandability: whether an application can serve as a basis for the solutions of

many SED related problems.

Various frameworks were followed throughout the period of this research. As it involves
creating software that requires high levels of accuracy and stability, it was important to follow
standard software development protocols for the design of this research. A brief overview of
this protocol is as follows: planning, analysis, design, implementation, testing, and maintenance.
Throughout the entirety of the research period, different stages of the protocol were followed
depending on the progress and integrity of the application. For example, if a design was failing,
previous steps were repeated, such as planning, to ensure proper development of the software.
Alongside this protocol, other frameworks were in place. The conceptual framework of key
identified aspects of the application was incorporated to split the development into simpler
steps. These steps include database analysis, software/hardware analysis, and interactive tools
design. Although these aspects were split, they were developed in tandem. From this point
forward, these steps will be known as “modules” of the conceptual framework, which helps

distinguish their role in this research.

The significance of this research will be discussed in this next section through an

example of where it can be applied. This example covers how this research can transform



current visual methods used in education and data analysis. It investigates the essence of

visually assisted learning and data visualization by taking advantage of virtual reality. From the

beginning, this research aimed to create a 3D virtual reality model and leverage virtual realities’

capabilities to promote visualization of various areas of space science or SED. One of these

areas, astronomical data analysis, is generally done by professionals in the field of astronomy,

and existing databases of arbitrary celestial objects prove to be difficult to process for a non-

professional individual trying to understand astronomy and astrometry concepts. In Figure 1,

the raw metadata on various celestial objects given by the Gaia Data Release 3, a survey done

by the European Space Agency, is shown.

Figure 1

Gaia Data Release 3 Data, European Space Agency
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For non-professional individuals, understanding the definitions of these figures would

time consuming. One of the applications that this research aims to accomplish is to translate

this publicly available data of different celestial objects into a visual mirror that would help

be

individuals understand the logic and scope of this data. Similarly, typical diagrams of the solar

system tend to disregard scale and distance in the models, but in cases that they do indicate

scale or distance, as shown in Figure 2, it is impossible to view the 2D model from any other

angle or distance, which is helpful in forming the mental imagery of scale and distance between

objects.



Figure 2

Solar System Diagram with Units
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With the use of virtual reality, scale, distance, and awareness of any other spatial
indicator is present and easier to grasp. This could be helpful in a wide variety of cases, such as
learning about planets and their sizes in a classroom setting. One thing to add, this software
acts as base level software, which can then be built upon and used in many problematic areas.
For example, if an engineer required a prediction of how a rocket will be affected when flying by
a celestial object, the software can be modified to handle orbital and gravitational predictions,
accurately mapping this data in real time, where then the engineer can visual the prediction in
3D space. In conclusion, it is evident that virtual reality can assist in the visualization of these

different 3D scenarios, which supports the significance of this research.

After understanding the scope of this research through the different discussions in this
section, including the introduction, literature review, research frameworks, and significance, it’s
important to understand and summarize the question being answered by this research. With
the vast amount of information and data publicly available, a need for an application that can
provide a platform for the visualization of this information and data is necessary. This research
plays a role in understanding whether a platform like this is viable. It looks to create
introductory software that serves as a framework for other applications requiring visualization
or interactive tools in the future. This framework consists of various modules such as importing

data from existing databases, mapping this data into a 3D environment for virtual reality, then
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creating interactable elements that assist in different applications mentioned earlier in this
section. The different modules can be modified, or other modules can be added to cater
towards a solution for the problem at hand. In the next section, we will look at the current

modules in more detail.
Methods

First and foremost, it is vital to discuss the main software involved in handling the bulk of
the visual processing. Unreal Engine 5 (UE5) is an open-source software, known in the software
development field as a “game engine” due to its original intention to assist in creating video
game-like applications. As of now, it is being used for other applications as well, including
architecture visualization, computer graphics, graphic design, cinematics, photography,
environmental design, modeling, VR development as well as video game development. UE5 has
many built in computer graphic features such as raytracing, real-time shadows and lighting,
realistic textures, and much more. This allows a developer to solely focus on creating the
application, rather than committing time to computer graphics, which is where it comes into
this research. UE5 is built on the C++ programming language, but it hosts its own programming
language known as Blueprinting. Blueprinting was the main language used throughout the
research period, combined with more complex C++ programming for custom functionality. In
this research specifically, UE5 served as the gateway between the data and virtual reality,
because data was imported into UE5 which was then displayed in virtual reality through it. We

will return to UE5 when we discuss the research process in more detail.

As stated in the previous section, the challenge of creating a framework design for this
application is broken down into three main parts or modules, these being: importing the data,
mapping this data into 3D, and creating interactive elements. These lay the groundwork for the
application. It’s important to understand that these modules are completely independent of
each other, thus giving an easy ability to modify or incorporate new ideology and
implementations into the framework. Figure 3 describes these modules and how they relate to
one another. We will discuss these modules in order, understanding their function, how they

were implemented, software and hardware involved, and how to play a role in the overall goal



of the research. Throughout the discussion, you can refer to Figure 3 to understand the overall

idea and framework of this research.

Figure 3
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Importing the data is the first module of the framework used in this application.
Originally, there were two main goals in mind when considering the data involved in this
application. These goals were to incorporate data on (a) objects in the solar system, and (b)
external objects outside of the solar system. During this part, preliminary research was vital to
have a good understanding of the current data we have on different celestial objects for both (a)
and (b). This preliminary research included online searches, literature reviews, as well as

discussions with professionals in the field of astrophysics who may be familiar with this data.



Starting with (a), after certain online research, it was chosen to use the NASA Spice
Toolkit (NST). NST is an information system used by the planetary science and the engineering
community to provide precision observation geometry with custom application programming
interfaces (API) for a wide range of applications. This toolkit provides high-precision information
on celestial objects in the solar system, making it perfectly applicable for (a). Incorporating this
data inside of UE5 would prove to be simple, as a wrapper (conversion between two pieces of
software) exists for UE5. MaxQ, the wrapper and a plugin for UE5, allows for NST integration
inside of UES5, providing the same functionality as NST but in the C++ and Blueprinting
languages. MaxQ was used to incorporate this data on (a) in real-time in UE5. NST has a wide
variety of information on different celestial objects, but the main information that was needed
for the goal of this module consisted of a few parts: position, orientation, and scale of these
celestial objects (see Appendix A). This data is available in UE5 during runtime and was used to
map the different objects, which in turn, allows the user to view this data in 3D and virtual

reality at any point and time.

What is important to note here is that the main research goal is making an expandable
visualization application that can be modified based on the use-case or problem. With the
incorporation of NST, much of the calculations and information is already handled, and it takes
some custom UE5 code to incorporate these functions. As an example, one use-case that NST
can handle is complex orbital predictions. NST allows a user to input personal data on an object,
such as a satellite, then calculate the ellipse of the orbit around an object the satellite may fly
past at a certain period of time. This data is then available in UE5 during runtime, which can be
seen visually in virtual reality. This example can be incorporated into this application with some
simple coding and prior knowledge of the module or overall conceptual framework of the
application, thus supporting one of the main goals of the research of making an expandible

application.

For (b), discussions with professionals regarding this topic led to multiple conclusions.
Dr. Bischoff and Dr. Bayliss, associate professors at the University of Cincinnati astrophysics
department gave their expertise, opinion, and insight into these different databases that they

believe should be incorporated into the application and would be of use. The main databases



that continually were of interest throughout the discussions included Gaia, SDSS, and the Dark
Energy Survey. Gaia is an observatory mission conducted by the European Space Agency to
create the largest 3D map of the milky way galaxy, which hosts information on nearly 2 billion
celestial objects (1% of the milky way galaxy). The Sloan Digital Sky Survey, known as SDSS, is a
survey consisting of information on distant stars and galaxies using spectral imaging and
spectroscopy. Finally, the Dark Energy Survey is a survey mapping different celestial objects in
hopes of understanding dark energy. For the goal of this module, it was decided to use Gaia,
particularly Data Release 3 (DR3), to map different objects within the application, due to its vast
range and consistency of data on celestial objects. What emerged from one of the discussions
with the professors was the idea of merging two of these databases, thus providing information
from both databases on any celestial object from within the application. In the astronomy
community, this is known as cross matching an object between two databases. A complex
algorithm is required to combine this information, so it was decided to focus on only one
database, Gaia. Cross-matching could be a feature further expanded upon in the future, which
supports the research goal of expandability, but was beyond the scope of the current module.
Also, other databases could also be included in the module if required for a specific application.
Now, with Gaia being the main database we would be working with, parsing this data, and
extracting certain information was important to keep the scope of this limited due to several
factors. Firstly, Gaia contains around 2 terabytes worth of data, which would be unnecessary for
this application, and secondly, this would serve as a testing ground for what could be possible
within our module. With that being said, to extract information from the Gaia database, the
programming language Astronomical Data Query Language (ADQL) was used from within the
Gaia archive. Approximately 1000 random objects were chosen with information regarding their
positionality, specifically their parallax, inclination, and declination. Gaia provides a wide variety
of data on these objects, however, only the positions were extracted for the purposes of testing
this module. The positionality information of these celestial objects was then converted to be
used in UE5, which then would be mapped (see Appendix B). As with (a), part (b) is mapped in
real time in UE5 during the operation of the application, which is used as a visualization of the

objects. A note is that the purpose of this research is to create an expandible or modifiable



10

framework, so this other data provided by Gaia can be incorporated in the future of this module

in the overall framework if an application requires it.

The second module of the framework is mapping this imported data. With the data
being readily available from the different databases, applying this information in UE5 is simple.
What needs to be considered however, is that the data on objects inside of the solar system are
separate from the data of the objects outside of the solar system (NST and Gaia respectively),
and the importance of this lies with the type of data being measured. NST provides data given
at any point of time that you require due to its prediction and calculation capabilities, whereas
Gaia provides data from only one reference of time (when that data was collected). As a default,
for this framework it was decided that NST maps the object the same moment in which the
application exists, meaning celestial objects are shown exactly how they are now in real-time. In
the next discussion of the module of the framework, time manipulation will further explain this
concept for NST. For Gaia, because the data is from one reference of time, the data is mapped
how it was captured (Gaia DR3 data was collected between 25 July 2014 (10:30 UTC) and 28
May 2017 (08:44 UTC) spanning 34 months). For NST data, the position, orientation, and scale
are used to map the objects, and for Gaia, only the position is used to map the objects (see
Appendix C). This module leaves many ways of expanding or modifying existing functionalities
for any application, which ties back to one of the main goals of this research of expandability.
For example, more Gaia data can be incorporated with proper optimization (limitations of this
will be discussed in more detail later in this section), or scale for objects is different relative to

each other, thus catering to an application that requires a visually appealing model.

Before moving onto the last module, it is important to talk about some of the hardware
used throughout the period of this research. In recent years, virtual reality has seen many
iterations of systems with notable companies including Valve, Meta, and Microsoft. In this
particular research, it was decided to use the Meta Quest 2 for a multitude of reasons. Firstly,
this system is the most accessible to individuals looking to get an entry-level virtual reality
system. Secondly, it has easy compatibility with UE5 through the OpenXR platform. OpenXR is
software responsible for connecting different virtual reality devices to platforms like Windows.

Fortunately, UE5 has a plugin for OpenXR, making virtual reality development simple. The Meta
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Quest 2 comes with a head mount display (HMD) which provides the virtual reality aspect to the
user. The Quest 2 also has two controllers with different buttons serving different functions. This
gives developers the ability to incorporate many interactive elements in their applications using
these controllers, which is where this hardware comes into this research. For the last module of
creating interactive elements, the development process consisted of programming different
buttons on the Quest 2 to serve different functions, such as popping up of a menu or movement

of the cursor.

The last module of the framework is creating interactive elements. This part of the
framework caters to certain applications but can be modified or changed to cater to suit any
application with specific needs. There were a few main interactions implemented which
includes: teleportation, scale manipulation, time manipulation and highlighting. These
interactions (besides highlighting) can be accessed through a simple menu as a part of this
module. This menu appears when the user clicks the button “B” on their Quest 2 controller.

Now, there will be a brief overview of each interactive function discussed previously.

Teleportation serves as a way of moving around the play space with a given model. With
virtual reality, movement is restricted to a certain area, so teleportation is a way of bypassing
this restriction. When the user chooses teleportation, they can choose from a list of celestial
objects they want to teleport to. When the teleport occurs, the user is moved to the location of

the celestial object.

Scale manipulation serves as a way of changing the scale of the given model. When the

III

user chooses scale, they can choose whether they want “visual” or “realistic” scale. “Visual”
scale refers to the celestial objects relative to each other are visually appealing, meaning the
scale is not based off the real-life scale of these objects relative to each other to allow for better
viewing of the model. In this example, the sun may appear smaller, with the planets appearing
closer to the center of the system but at a size that is visible, and the Moon is at a comfortable
orbit around the Earth. “Realistic” scale refers to the celestial objects relative to each other are
realistically represented. This means what the user sees is exactly how the objects appear in

real-life. This is useful in cases where you want to learn about the solar system and see the

exact scale, distance, and other spatial indicators of the objects. Now in this case, generally the
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planets appear small compared to the sun, and the distances are vast. The scale manipulation
menu also contains a draggable slider, that the user can change with the cursor provided by the
Quest 2 joystick button. This slider will dynamically change the scale of the entire model
depending on the position of the slider. The exact size of the model is described in the scale
menu. This gives the user the ability to change the scale of the model at will, which can be

useful in cases where understanding the scale of the celestial objects is important.

Time manipulation serves as a way of changing the time of the solar system model. The
NST time concept was mentioned earlier, however, it is important to expand on the
understanding of time for this particular module. With each moment of time in the application,
the NST data is updated to the specified or set time. As default, this time is set to now as stated
in the previous module; however, the time could be set to any other time. For example, the
time could be set to 4 months, 25 days, 3 hours, and 15 seconds into the future, and NST will
calculate and predict the exact position, orientation, and scale of the planets at that point in
time, the data will be mapped in real time, then this data could then be visualized through
virtual reality. With that understanding, the time manipulation module allows for users to
choose the point in time they want to view the model. They can choose days, months, or years
to go into the future. A draggable slider is present that the user can change with the cursor
provided by the Quest 2 joystick button. This slider will dynamically change the time of the
entire model depending on the position of the slider, which updates the model in real time.
There is also an indication of what time you are looking at in the time menu. An example where
this could be useful is when a user wants to see the exact position of a planet 15 days into the

future.

The last interactive function implemented in this module is called highlighting.
Highlighting serves as a way of allowing the user to open optional information on various
celestial objects in the model. When the user moves their controller over a desired object, a
details panel appears above the object, giving the user additional information on the object
such as the name, radius, position, and other relevant information. As soon as the user removes
their controller from that area, the details panel becomes hidden. This is useful in cases where a

user is learning various information about the different celestial objects in the solar system.
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Now, it is important to mention that these interactive elements were chosen for
applications as stated in the descriptions. If there is requirement for an application that needs
other interactive elements to be included, this module can be changed or expanded upon to

suit the need of that application.

With the different modules of the framework of the application being discussed, it is
important to understand the limitations of this application and its framework that were
discovered or purposely implemented, as well as challenges faced during the research period.
Firstly, incorporating more than a certain number of objects within the model causes undesired
effects such as light flickering and performance drops in UE5. This restricts the current
framework to a certain number of objects, which after testing proved to be approximately 1000-
5000 objects. Now, in the future, it would be vital to optimize certain areas of the framework to
support an increasing number of objects. Because of the large number of objects, it was also
difficult to create interactive elements with the Gaia data. In the future, having various
interactive tools like zoom in to the object, highlight, etc., that works with the Gaia data would
open doors to many applications in different fields of space science and SED. The biggest
challenge that was faced was, with the given time for conducting the research, the main
modules discussed in this section were the only features that were feasible to create in this
period of time. In the future, it would be important to expand upon the current system to cater
to other applications in the different areas of space science and SED. Even so, with the current
system, many use-cases in different areas of space science and SED can already be discussed,
such as an educational learning tool or solar system visualization tool. Its good to mention that,
although the modules discussed are the only ones incorporated in the current framework, they
serve as the groundwork for other modules to be built upon. The goal of the research was to
create an expandable 3D virtual reality model and application that serves as the basis for other
applications that require other functionalities, and it is evident to state that that goal was

accomplished.
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Results

This section will discuss the results of this research. After the period of this research
following the software development protocol and different conceptual frameworks, we have a
fully interactive, accurate, easy-to use 3D virtual reality application for the Oculus Quest 2 that
uses real publicly available data to map different celestial objects. An example of the solar

system model created by the NST data is shown in Figure 4.

Figure 4
Solar System Model, SpaceXR

An example of the Gaia data mapped in the application is shown in Figure 5.

Figure 5
Imported Gaia Stars, SpaceXR
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Here is an example of how the menu for the interactive elements looks like in Figure 6.

Figure 6

Interactive Elements

The current conceptual framework for the application is made up of different steps or
“modules” which consist of the following: importing data, mapping the data, and interactive
elements. The first module, importing data, implements various importation methods for
databases containing data on celestial objects in the solar system, and outside of the solar
system. The second module, mapping the data, implements ways of mapping this imported data
into Unreal Engine 5, and bridges the gap between this data and virtual reality to create a
visualization of this data. The last module, interactive elements, implements ways for the user

to interact with the mapped model of different celestial objects within the solar system.
Conclusion

After understanding the methods, processes, and results, we can conclude this research.
The current application, a fully interactive 3D virtual reality model, can assist in different
problems faced by various areas of space science and SED, such as creating an educational
learning tool in a classroom setting or solar system visualization tool in a work setting. This
application also serves as a basic platform for other applications to build upon through the idea
of “modules” or building blocks involved in creating the framework of the application. The
current framework includes the following modules: importing data, mapping the data, and
interactive elements. Each module can be modified or added upon to suit different space
science or SED application’s needs. One of the goals of the research was to create an

expandable 3D virtual reality model and application that serves as the basis for other
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applications that require other functionalities, and it is evident to state that that goal was

accomplished.

Some of the limitations include restrictions on the number of objects permitted before
software bugs and drops in performance in UE5 was visible. Optimization of the software can
help increase the permitted number of objects and increase the overall performance of the
application. Another limitation is, with the restricted time, other modules useful for various
areas of space science or SED could not be developed. In the future, these modules can be
added onto the current framework to assist in any visualization problem faced. One example of
a problem like this goes as follows: an engineer requires a prediction of how a rocket will be
affected when flying by a celestial object, so the software can be modified to handle orbital and
gravitational predictions, accurately mapping this data in real time, where then the engineer can
visual the prediction in 3D space. This example, along with many other problems faced by
scientists, educators, engineers, and other fields under the space science and SED umbrella can
use this software to create applications suitable for their particular needs to solve those

problems.
Next Steps

This research set the basis for what this software can achieve. In the future, there will be
several modifications and additions that would greatly benefit the capabilities of this
application. Some necessary steps include optimizing the software to handle more objects. This
opens the door to including more complex, higher fidelity, and visually stunning models,
leveraging UES'’s realistic computer graphical capabilities. Another necessary step is
incorporating interactive elements with the Gaia data. At the moment, only the NST data can be
interacted with, and translating this to other data will greatly expand the capabilities of this
software. Also, one of the goals of the research, creating an expandable piece of software
capable of handling modifications and changes, gives this software a plethora of directions it
can go. The concept of modules gives any user, as long as they understand the modules and the
framework of the application, the ability to create any solution for their problem. For example,
creating an orbital prediction module that calculates and displays an object’s orbit as it passes

by a celestial object, which can then be visualized in virtual reality. The overall goal is to make



this software as accessible as possible, leveraging on the concept of modules, so polishing this
concept will make this software go a long way. In the end, as long as this research inspires or

benefits an individual, it has achieved its goal.

17



18

References

NASA. (2018, December 14). NASA's eyes: Eyes on exoplanets. NASA. Retrieved October 11,

2022, from https://eyes.nasa.gov/eyes-on-exoplanets.html

Owen, T. Chant (2023, March 10). solar system. Encyclopedia Britannica.

https://www.britannica.com/science/solar-system

Acknowledgements

Project Advisor: Dr. Ming Tang, tangmg@ucmail.uc.edu

Astrophysics Discussions: Colin A Bischoff, bischocn@ucmail.uc.edu; Matthew Bayliss,

baylismb@ucmail.uc.edu

Research Funding Source: University of Cincinnati Space Research Institute for Discovery and

Exploration

Internal Solar System Data: Acton, C.H.; "Ancillary Data Services of NASA's Navigation and

Ancillary Information Facility;" Planetary and Space Science, Vol. 44, No. 1, pp. 65-70,
1996.
DOI10.1016/0032-0633(95)00107-7

Charles Acton, Nathaniel Bachman, Boris Semenov, Edward Wright; A look toward the future in
the handling of space science mission geometry; Planetary and Space Science (2017);

DOI 10.1016/j.pss.2017.02.013

External Celestial Data: This work has made use of data from the European Space Agency (ESA)

mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing

and Analysis Consortium

(DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC

has been provided by national institutions, in particular the institutions participating in

the Gaia Multilateral Agreement.


https://eyes.nasa.gov/eyes-on-exoplanets.html
https://www.britannica.com/science/solar-system
mailto:tangmg@ucmail.uc.edu
mailto:bischocn@ucmail.uc.edu
mailto:baylismb@ucmail.uc.edu
https://doi.org/10.1016/0032-0633(95)00107-7
https://doi.org/10.1016/j.pss.2017.02.013
https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium

19

Appendix A
NST position, orientation, and scale code

NST functionality allows for precise calculations of different variables. In UE5 we use
MaxQ’s functions to access NST’s capabilities. In this case, we wanted the position, orientation,
and the scale of a particular celestial object. Figure 1 demonstrates the code that calculates the
location of the object. Figure 2 demonstrates the code that calculates the size of the object.
Figure 3 demonstrates the code that calculates the rotation of the object. Figure 4

demonstrates how the transform is calculated using the other functions.
Figure 1

Location Blueprint Code

[ calculate Location ‘E Branch

(7 Const SOLAR SYSTEM BARVCENTER
Retur Value

[F ConstECLIPI2000

70_ WSE

e Add pin ®

Note. The function starts with getting the name of the object, then uses the function “Spkpos”
given by MaxQ to get the precise location information of that object. This data is converted to

UE units, and scaled down to fit UE5’s play area. It returns the location vector of that object.
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Figure 2

Size Blueprint Code

Note. The function starts with getting the name of the object, then uses the function “bodvrd
SDistanceVector” given by MaxQ with the item parameter set to “RADII”. This gets the precise
radius, or scale of the object. This data goes through multiple conversions and is scaled down to

match the location. It returns the scale vector of that object.
Figure 3

Rotation Blueprint Code

Note. The function starts with getting the name of the object, then uses the function “SxForm”

to get the state transformation. This gives information on the rotation and angular velocity of an
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object. This is then converted to a quaternion, then transformed into UE5’s units, returning the

rotator for that object.
Figure 4

Transform Blueprint Code

¥ Calculate Location

J Select Transform

Return Value

A
8
Pick A

\

¥ Calciilate Size [ Return Node
B Calculate Transform T

: A »
SET »
» Transform
Nome Target [5f | Mot
/ahve

J Calculate Rotation

Note. The function starts with getting the name and index of a particular object. Prior to this
function, objects were already initialized and given an index. The location, size, and rotation are
calculated with the functions shown earlier, then the transform is created and returned. The

object with the index is then given this transform to complete the mapping.
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Appendix B
Gaia data extraction and import into UE5 code

To extract the data from the Gaia DR3 database, coding in ADQL is required. This
language allows you to query up the specified data you require. In this case, we need the
“source_id” (the object id), the “ra” (inclination), the “dec” (declination), and the “parallax”.
Different parameters were passed that prevented unwanted data from being extracted from the

database as shown in Figure 1.
Figure 1

ADQL Gaia DR3 Code

SELECT TOP 1888 source_id, ra, dec, parallax
FROM gaiadr3.gaia_source

WHERE parallax != @

AND parallax > @

Note. In the first line, we query the top 1000 objects with their associated “source_id”, “ra”,
“dec”, and “parallax”. The second line indicates where we want to extract this data from, in our

case DR3. The following two lines prevent unwanted data and outliers from being extracted.

Once we have this data queried, we can download this data into a .csv file as shown in

Figure 2, where we can then manipulate the data.

Figure 2
CSV Download Query
4 (=] , 16783309838360 09-Mar-2023, 00:33:03 1000 27 kE a g@ﬁ B®é

Note. We can download the queried data by clicking the download button, and making sure the

download format is set to “CSV”.
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Next we take this .csv file and calculate all of the needed values that we can use in UES.

First, we find the distance in parsecs which is calculated using Distance =

Parallax

. Then,

using

some trigonometry, we can calculate the X, Y, and Z associated with the inclination, declination,

and distance. For X we use the formula (Distance * cos(Declination)) * cos(Inclination).

For Y we use the formula (Distance * cos(Declination)) * sin(Inclination).

For Z we use the formula (Distance * sin(Declination). To convert from parsec to lightyear,

we multiply the value by 3.262, and then from lightyear to kilometer by multiplying by

30856775812800. These calculations are and the associated values are shown in Figure 3.

Figure 3

CSV Data

1

2 |4038379047750904704
3 4038379047750906368
4 |4038379047750929664
5 |4038379047750930816
6 4038373047750942080
7 4038379047750946560
8 |4038379047750953344
9 4038402927783291136
10 4038402927783291264
11 |4038402927789294208
12 4038402327783235104
13 |4038402927783307008
14 |4038402927789307392
15 |4038402927789307776
16 4038402927783312384
17 |4038402927789314048

5826914
273.5842062
273.5794017
273.581518
273.5825531
273.5778844
273.5865756
273.4244179
273.4214969
273.4172453
273.42043
273.4247821
273.4166838
273.4224458
273.4196646
273.4111104

72033019
-35.71881712
-35.72154585

-35.7195795
-35.71791975
-35.72191376
-35.71414377
-35.75461548
-35.75656739
-35.75894453
-35.75603372
-35.75149239
-35.75678331
-35.75285771
-35.75405218
-35.75940235

3.831252876
0.459921003
0.646441043
0.024809044
0.528860995
0.379384942
0.967435625
0.536826902
0.193622526
0.142965512
0.567124281
0.153680206
0.462632374

0.12067219

0.32352626
0.086260667

0.261011223
2.174239167
1.546931482
40.30788171
1.890856029
2.635845258
1.033660509
1.862797852
5.164683317
6.994693959
1.763281937
6.507018876
2.

0.099967586
0.835306766
0.591332132
15.46966764
0.728263679
1.007127791
0.401126878
0.676231217
1.866115336
2.513000372
0.638054442
2.380831386
0. a3

0.027036158
0.227266559
0.157839633
4.164286999
0.196850265
0.267188339

0.11015828

0.07185242
0.192771793
0.248802122
0.065223803
0.253855632
0.076876972

0.239587952
1.994474426
1.420707559
36.98747659
1.733845008
2.421153491
0.94626446
173423309
4.811307937
6.522934172
1.64243675
6.05047547

M

8.286913479
3.090933203
11.5927692

3.022415866
1.124236548
4.162484407

0.315117942
0.114053356
0.386339786

7.709645778
2.876975699
10.81280551

_lightyear|
0.326094267
2.724770669
1.928925414
50.46205586
2.375596119
3.285250853
1.308475875
2.205866229
6.087268228
8.197407213

2.08133339
7.766436714
2.547430354
9.859120554
3.667259621
13.57802414

0.088191947
0.741343515
0.514872884
13.58390419
0.642125565
0.871568362

0.35933631
0.234382533
0.628821589
0.811592523
0.212760044

0.82807707
0.250772681
1.027914727
0.372042047
1.260240382

1 K
_lightyear B z1_lightyear B x1 |

0.781535898
6.505975774
4.634348058
120.6531486
5.655802415
7.897802638

3.08671467
5.657068339
15.69644369
21.27781127
5.357824399
19.73665098
6.569883616
25.14886453
9.384694731
35.27137156

3084677399737.02

834248666915.52

7392911709143.21,

25774873600083.30 7012713258265.48 61543052080987.50
18246603021055.70 4870422177282.88  43838454651146.90|
477344066410257.00  128496470340962.00  1141314273118900.00)
22471869061917.60 6074164502067.35 53500866691777.50|
31076716448484.10 8244570674089.60 74708990479676.90
12377482132770.60 3399129354520.36  29198670311884.40|
20866315051577.30 2217134003277.32 53512841659757.70|
57582302577692.60 5948316004473.07  148479964451497.00)
77543089034079.30 7677231309919.47  201276717399739.00|
773170 01 1 5068 90/

30 78331663139 186638165131691.00|

24097896610229.60
93262008781467.00
34690315134021.90
128440848169520.00

2372175478772.78
9723523688716.30
3519318831421.00
11921200163339.00

62147586095816.30|
237894811363051.00|
88774194174032.50|
333648315435431.00,

This csv file is then imported into UE5 as a data table, parsed and consequently mapped.
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Appendix C
Mapping data code

For this particular part of the process, we must take the imported data from both the
NST and the Gaia data, and properly map this data into UE5 units. For NST, we have the
transform available from calculating it previously. Generally, the distance and the scale of the
transform is manipulated to be smaller, due to the size restrictions UE5 has in place. This
manipulation of the transform is what allows users to manipulate the scale during the
interaction. For the Gaia data, this data is imported as a data table, which is then parsed and

mapped. Figure 1 demonstrates this process.
Figure 1

Gaia Celestial Object Map Function

Note. The function starts by parsing the data table in a for loop, and getting each column of
each row. The kilometer value is then used but is scaled down and clamped to a certain value
range. The clamp is in place to prevent extremely large values from positioning the star far
enough away where the user can’t see it. This value is then converted to a transform and
applied to an object. The “Add Instance” function is important when dealing with a large
number of objects. In this case, we have over 1000 objects, and rather than create a new mesh

for each object, we re-use the same mesh, but create an instance. This technique allows for



many more objects to be created. Each time an instance is created, we apply this transform to

that instance.
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