
change the name of the third dot and call it "with Marie" instead of 
keeping "Marie," and explicitly add the "with" to the green rela­
tionship. We may never forget that it is difficult to tell a story corre­
sponding to the starting diagram. The teacher must be supple and let 
the children modify the diagram when they want to do it and exactly 
as they want to do it. They must have the possibility to adapt the 
diagram to the story they wish to tell, and the story to the diagram 
they want to keep, in such a way that they slowly reach a solution 
which satisfies them. If they succeed in building a coherent story­
but a story which does not even look like the starter-the teacher 
must be able to accept it: the terminology, the convention, the game's 
control belong to the children. 

One must , at all cost, avoid dogmatic use of the technique, for dog­
matism kills the children's freedom of expression. We must use repre­
sentation systems which, thanks to inner technical constraints, sug­
gest to the child the use of a logic which the teacher has hidden in it. 

Conclusion 
A non-verbal auxiliary formalism can serve as guide to the child's 
thought. If this formalism, or representation system, is used in a 
non-dogmatic way, it enables the children to build a coherent story 
through successive adaptations that they suggest. This story can 
be graphically represented by the proposed formalism. In this case 
one should use the definitions formulated by some children and ac­
cepted by the whole class. Such a formalism is also useful because 
the teacher, when choosing the symbols and imposing upon them 
the technical constraints, can hide a logic in the system. The teacher 
can thus choose a logic which the children will use nearly sponta­
neously. Moreover, such a formalism enables the teacher to visualize 
the difference between object-language and metalanguage. 
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Communicating Mathematics: 
Surface Structures and Deep Structures 

Richard R. Skemp 

A distinction is made between the surface structures (syntax) of mathematical 
symbol-systems and the deep structures (semantics) of mathematical schemas. 
The meaning of a mathematical communication lies in the deep structures­
the mathematical ideas themselves, and their relationships. But this meaning 
can only be transmitted and received indirectly, via the surface structures; cor­
respondence between deep and surface structures is only partial. Some result­
ing problems of communicating mathematics are discussed, and some remedies 
suggested. 

The power of mathematics in enabling us to understand, predict, and 
sometimes to control events in the physical world lies in its conceptual 
structures- in.everyday language, its organised networks of ideas. 
These ideas are purely mental objects: invisible, inaudible, and not 
easily accessible even to their possessor. Before we can communicate 
them, ideas must become attached to symbols. These have a dual sta­
tus. Symbols are mental objects, about which and with which we can 
think. But they can also be physical objects-marks on paper, sounds 
-which can be seen or heard. These serve both as labels and as han­
dles for communicating the concepts with which they are associated. 
Symbols are an interface between the inner world of our thoughts, 
and the outer, physical world. 

These symbols do not exist in isolation from each other. They have 
an organisation of their own, by virtue of which they become more 
than a set of separate symbols. They form a symbol system. A symbol 
system consists of 

a set of symbols corresponding to a set of concepts 

together with 
a set of relations corresponding to a set of relations 
between the symbols 0 between t e concepts. 

What we are trying to communicate are the conceptual structures. 
How we communicate these, or try to, is by writing or speaking sym­
bols. The first are what is most important. These form the deep struc­
tures of mathematics. But only the second can be transmitted and 
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received. These form the surface structures. Even within our minds 
the surface structures are much more accessible, as the term implies. 
And to other people they are the only ones which are accessible at all. 
But the surface structures and the deep structures do not necessarily 
correspond, and this causes problems. 

Here are some examples to illustrate the differences between a sur­
face structure and a deep structure. 

I feel like a wet rag 
-...._ Same surface structure, 
___.,.--- different deep structure 

I feel like a glass of beer~ 
Same surface structure, 

~ same deep structure 
I feel like a cup of tea 

~ Different surface structure, 
~ same deep structure 

Shall I put the kettle on? 

What has this to do with mathematics? At a surface level wet rags 
and cups of tea would seem to have little connection with mathema­
tics. But at a deeper level, this distinction between surface structures 
and deep structures, and the relations between them, is of great im­
portance when we start to think about the problems of communicating 
mathematics. 

For convenience let us shorten these terms to S for surface struc­
ture, D for deep structure. S is the level at which we write, talk, and 
even do some of our thinking. The trouble is that the structure of S may 
or may not correspond well with the structure of D. And to the extent 
that it does not, S is inhibiting D as well as supporting it. 

Let us look at some mathematical examples. We remember that a 
symbol system consists of: 
(i) a set of symbols, e.g. 1 2 3 

1/2 3/4 

a b c 
(ii) one or more relations on those symbols, e.g. order on paper 

(left/right, below/above); order in time, as spoken. 

But since the essential nature of a symbol is that it represents 
something else-in this case a mathematical concept-we must add 

(iii) such that these relations between the symbols represent, in some 
way, relations between the concepts. 
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So we must now examine what ways these are, in mathematics. Here 
is a simple example. (Note that 'numeral' refers to a symbol, 'number' 
refers to a mathematical concept.) 

Symbols 
(i) 1 2 3 ... (numerals in 

this order) 

Relations between symbols 
(ii) is to the left of (on paper) 

before in time (spoken) 

Concepts 
the natural numbers 

Relations between concepts 
is less than 

This is a very good correspondence. It is of a kind which 
mathematicians call an isomorphism. Place value provides another 
well known example of a symbol system. 

Symbols 
(i) 1 2 3 ... (numerals) 

Relations between symbols 
(ii) numeral1 is one place 

left of numeral2• 

Concepts 
natural numbers 

Relations between concepts 
number1 is ten times 
number2• 

By itself thfs is also a very clear correspondence. But taken with the 
earlier example, we find that we now have the same relationship 
between symbols, is immediately to the left of, symbolising two 
different relations between the corresponding concepts: is one less 
than and is ten times greater than. We might take care of this at the 
cost of changing the symbols, or introducing new ones; e.g., commas 
between numerals in the first example. But what about these? 

23 2112 2a 
These can all occur in the same mathematical utterance. And this is 
not just carelessness in choice of symbol systems; it is inescapable, 
because the available relations on paper or in speech are quite few: 
left/right, up/down, two dimensional arrays (e.g., matrices); big and 
small (e.g., 7, r) What we can devise for the surface structure of our 
symbol system is inevitably much more limited than the enormous 
number and variety of relations between the mathematical concepts, 
which we are trying to represent by the symbol system. 

Looking more closely at place value, we find in it further subtleties. 
Consider symbol: 5 7 2. Kt the S level we have three numerals in a 
simple order relationship. But at the D level it represents '""" 
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(i) three numbers, corresponding to 5 
t 

7 
t 

2 
t 

(ii) three powers often: 102 101 10° 
These correspond to the three locations of the numerals, in order 
from right to left. 

(iii) three operations of multiplication: the number 5 multiplied by the 
number 102 

( = 100), the number 7 multiplied by the number 101 

( = 10), the number 2 multiplied by the number 10° ( = 1). 
(iv) addition of these three products (5 hundreds, seven tens, two). 
Of these four at D level, only the first is explicitly represented at S 
level by the numeral 572. The second is implied by the spatial 
relationships, not by any visible mark on the paper. And the third and 
fourth have no symbolic counterpart at all: they have to be deduced 
from the fact that the numeral has more than one digit. 

Once one begins this kind of analysis, it becomes evident there is a 
huge and almost unexplored field- enough for several doctoral 
theses. For our present purposes, it is enough if we can agree that the 
surface structure (of the symbol system) and the deep structure (of the 
mathematical concepts) can at best correspond reasonably well, in 
limited areas, and for the most part correspond rather badly. 

'lb help our thinking further in this difficult area, I would like to 
introduce two further ideas. The first comes from my new model of 
intelligence (Skemp 1979) and does not require any other parts of 
the theory. It is based on the well-known phenomenon of resonance. 
"The starting point is to suppose that conceptualised memories are 
stored within tuned structures, which, when caused to vibrate, give 
rise to complex wave patterns .... Sensory input which matches one 
of these wave patterns resonates with the corresponding tuned 
structure, or possibly several structures together, and thereby sets 
up the particular wave pattern of a certain concept." (page 134) 

It is convenient at this stage to introduce the term schema, which 
is simply a shorter way of referring to a conceptual structure. A 
schema (i.e., a conceptual structure stored in memory) thus 
corresponds in this model to a particular tuned structure. We all 
have many of these tuned structures corresponding to our many 
available schemas, and sensory input is interpreted in terms of 
whichever one of these resonates with what is coming in. What is 
more, different structures may be thus activated by the same input 
in different people, and at different times in the same person. 
Different interpretations will then result. For example, the word 
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'field' will have quite different meanings according as it evokes 
resonances corresponding .to the schemas in advanced mathematics, 
electromagnetism, cricket, agriculture, or general scholarship. 

The second idea is due to Tall (1977) who has suggested that a 
schema can act as an attractor for incoming information. He took 
the idea from the mathematical theory of dynamic systems; but if 
we now combine it with the resonance model, we can offer an 
explanation of how this attraction might take place. Sensory input 
will be structured, interpreted, and understood in terms of which 
ever resonant structure it activates. In some case, more than one 
resonant structure may be activated simultaneously, and we can 
turn our attention at will to one or the other. In others, one schema 
captures all the input. (This 'capture effect' is well known to radio 
engineers, who have put it to good use.) 

So we may now synthesise the following ideas. 

s 
symbol systems surface structures 

8" e: 
"' 

;:,-
g ~;· 

;:,- ;:,-
0 !;l .... ~ 
~ 0 
""1 0 

;:1 

• and and 

~ 
0 
~ 
R. deep structures conceptual structures 

D 

Note that in the above diagram each point represents not a single 
concept but a schema, in the same way as a dot on an airline map 
can represent a whole city-London, Atlanta, Rome. 

How can this theoretical model help our thinking, and what are 
the practical consequences? All communication, written or oral, is 
necessarily into the symbol system at S. To be understood 
mathematically, it must be attracted to D. This requires that D is a 
stronger attractor than S. If it is not, S will capture the input, or 
most of it. 

One of the advantages of a good model is that it points up some 
questions we should ask n ext. The first is clearly: What-are the 
conditions for D t o be a strong attractor? Another is: can D capture 
the input instead of S? If so what happens? 

I will take the second first, briefly. If this were to happen, I think 
it would mean that all the mathematical activity was confined to a 
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deep conceptual level, and was not 'escaping' to a symbolic level at 
all. This may not happen completely, but some of the high-powered 
mathematicians who taught me at university suggest only very 
limited escape to S! 

Returning to the first question: what are the conditions for D to 
be a strong attractor? S has a built in advantage: all communicated 
input has to go there first. And for D there is a point of no return. 
In the years' long learning process, if the deep conceptual structures 
are not formed early on, they can never develop as attractors. For 
too many children, D is effectively not there. And if the D structure 
is absent or weak, all input will be assimilated to S: the effort to 
find some kind of structure is strong. So S will build up at the 
expense of D. 

But this guarantees problems, in view of the lack of internal 
consistency of S. This reveals a built-in advantage of D, that it is 
internally consistent. Of all subjects, mathematics is one of the most 
internally consistent and coherent. So if it gets well established, 
input to Swill evoke more extensive and meaningful resonances in 
D than in S, and D will attract much of the input. 

Doing mathematics involves the manipulation of certain mental 
objects, namely mathematical concepts, using symbols as combined 
concepts and labels. But for many children (and adults) these objects 
are not there. So they learn to manipulate substitute objects: empty 
symbols, handles without anything attached, labels without 
contents. This in the long run is much more difficult to do, though 
unfortunately in the short run it may be easier to learn. The 
manipulation of mathematical concepts is helped by the nature of 
the concepts and schemas themselves, which give a feeling of 
intrinsic rightness or wrongness. This arises partly from the 
concepts themselves, whose individual properties contribute to how 
we use them and fit them together. More strongly, it comes from the 
schemas, which determine what are permissible and non-permissible 
mental actions within a given mathematical context. 

The problems which so many have with mathematical symbols 
thus arise partly from the laconic, condensed, and often implicit 
nature of the symbols themselves; but largely also from the absence 
or weakness of the deep mathematical schemas which give the 
symbols their meaning. Like a referred pain, the location of the 
trouble is not where it is experienced. The remedy likewise lies 
mainly elsewhere, namely in the building up of the conceptual 
structures. 
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How can we help learners to do this? This is too large a question 
for a single paper, but here are some suggestions as starting points. 

(i) Particularly in their early years we can give children as many 
physical embodiments as possible of the mathematical concepts which 
we want to help them to construct. As examples of units, tens, and 
hundreds, we can use single milk straws, bundles of ten of these, and 
bundles of ten bundles of ten. These correspond much more closely 
to the relevant mathematical concepts than do the associated symbols, 
and so the visual input will be attracted more strongly to the rele­
vant parts of D than to S. In such cases, moreover, the input goes 
first to D, then to S, since the children are first presented with the 
physical embodiments of the concepts, and thereafter are asked to 
connect these with appropriate symbols. 

(ii) By careful analysis of the mathematical structure to be acquired, 
we can sequence the presentation of new material in such a way 
that it can always be assimilated to a conceptual structure, and not 
just memorised in terms of symbolic manipulations. Many existing 
texts show no evidence that this has been done. (See Skemp 1971, 
Chapter 2.) 

• 
(iii) Again in these important early years, it he~ps children if we 
stay longer with spoken language. The connection between thought 
and spoken words are initially much stronger than those between 
thoughts and written words or symbols. Spoken words are also much 
quicker and easier to produce. So in the early years of learning 
mathematics, we may need to resist pressures for children to have 
'something to show' in the form of pages of written work. 

(iv) It is often helpful to use informal, transitional notations as 
bridges to the formal, highly condensed notations of traditional 
mathematics. By allowing children to express their thoughts in their 
own ways to begin with, we are using symbols which are already 
well attached to their associated concepts. These ways of expression 
may often be lengthy, unclear, and differ between individuals. By 
experience of these disadvantages, and by discussion, children may 
gradually be led to the use of established mathematical symbolism 
in such a way that they experience its convenience and power for 
communicating and manipUlating mathematical ideas. ·~ 
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Mathematical Symbolism 

Derek Woodrow 

One of the essential distinguishing features of mathematics is its even-
tual dependence upon symbols and symbolic expression. Few attempts to 
determine those processes, activities, or contents which uniquely identify 
mathematics have succeeded. It is indeed questionable whether human 
knowledge can be classified into such self-contained categories. The many 
diverse activities of mathematicians do, however, have symbolic expression 
as their common feature, and the extent to which modern disciplines depend 
upon mathematics could be measured by their growing reliance on symbols. 
It is reasonable to surmise that much of the difficulty experienced by children 
in mathematics, and the lack of popularity of physical as opposed to biologi­
cal sciences in higher education, could be traced to the problem of symbolisa­
tion. It will be interesting to watch the effect on, say, geography as the school 
syllabuses move Mwards mathematical as opposed to descriptive aspects. 
There is surprisingly little apparent research into the use and learning of 
symbols, except for the many investigations into both the problem of how 
children learn to read and adult perceptual experiences with words (e.g., 
Coltheart 1972). There is, however, a real distinction between the use of 
symbols as a verbal language (spoken or written) and the use of symbols in 
the mathematical sense. It will indeed be suggested below that one activity 
interferes with the other. 

In normal reading activity the written word contains very many 
redundancies. There is clear experimental evidence that not only are 
many of the words used unnecessary and the number of letters per 
word quite extravagant but the letter symbols themselves are only 
partially scanned in many reading techniques. The reader only 
notices, say, the bottom of the letter and the relationship between 
the symbols is sufficient to determine them completely. Try reading 
the following doggerel: 

THR NC WS YNG MN WHS FC WS GRN? 
T WS TR THT LL WH~W HM FND HM TH STRNGS~ THNG 
THDSN 

The relationships between verbal symbols can also be seen in the 
way in which adults react and remember random letters. A collec­
tion ofletters such as POSTIC is much more easily read and remem-
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