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Mathematical Symbolism 

Derek Woodrow 

One of the essential distinguishing features of mathematics is its even-
tual dependence upon symbols and symbolic expression. Few attempts to 
determine those processes, activities, or contents which uniquely identify 
mathematics have succeeded. It is indeed questionable whether human 
knowledge can be classified into such self-contained categories. The many 
diverse activities of mathematicians do, however, have symbolic expression 
as their common feature, and the extent to which modern disciplines depend 
upon mathematics could be measured by their growing reliance on symbols. 
It is reasonable to surmise that much of the difficulty experienced by children 
in mathematics, and the lack of popularity of physical as opposed to biologi­
cal sciences in higher education, could be traced to the problem of symbolisa­
tion. It will be interesting to watch the effect on, say, geography as the school 
syllabuses move Mwards mathematical as opposed to descriptive aspects. 
There is surprisingly little apparent research into the use and learning of 
symbols, except for the many investigations into both the problem of how 
children learn to read and adult perceptual experiences with words (e.g., 
Coltheart 1972). There is, however, a real distinction between the use of 
symbols as a verbal language (spoken or written) and the use of symbols in 
the mathematical sense. It will indeed be suggested below that one activity 
interferes with the other. 

In normal reading activity the written word contains very many 
redundancies. There is clear experimental evidence that not only are 
many of the words used unnecessary and the number of letters per 
word quite extravagant but the letter symbols themselves are only 
partially scanned in many reading techniques. The reader only 
notices, say, the bottom of the letter and the relationship between 
the symbols is sufficient to determine them completely. Try reading 
the following doggerel: 

THR NC WS YNG MN WHS FC WS GRN? 
T WS TR THT LL WH~W HM FND HM TH STRNGS~ THNG 
THDSN 

The relationships between verbal symbols can also be seen in the 
way in which adults react and remember random letters. A collec­
tion ofletters such as POSTIC is much more easily read and remem-
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bered than XZBQT which proves much more difficult because it does not 
resemble the normal letter associations used in the English language. 

The redundancy which is normal in language is not usually present 
in mathematical symbolism at school level. Statements such as: 

3 + 4 + 10 + 3 . 2 = 20 . 2 
An B' = 0 
(3,4) + (4,5) = (7,9) 
4x2 + 3x + 2 = 0 

contains little redundancy, although the last example with experience 
can be seen to have a recognisable form in which one might only need 
to know the coefficients 4, 3, and 2. Even in this case however the 

' ' relevant distinctive information is contained inside the symbolisation 
which must therefore be read rather than just seen. Yet another com­
plication in mathematical symbolism is the phenomenon of temporary 
redundancy in which a whole group of symbols are at one stage carried 
without reading, only to need detailed reading later. For example: 

(12x2 - 2)2 - 2(12x2 - 2) + 1 = 0 12x2 = 3 
[(12x2 - 2) - 1]2 = 0 x2 = i 
12x2 - 2 = 1 X = ±! 

This becomes more apparent in the later stages oflearning mathe­
matics, and this variation in the degree of redundancy causes many 
problems for college and university students. 

Another distinction between the use of words and mathematical 
symbols is the independence of one symbol from the preceeding and 
succeeding symbols. The anecdote is related of the three-year-old who 
was arithmetically very advanced in that the addition of three digit 
numbers presented little difficulty. His parents expressed some con­
cern that he had no interest in reading; reputedly because letters 
behave irrationally, in the sense that whilst any sequence of digits 
make a sensible number a random sequence of letters do not make a 
word. In reading, the individual symbols do not themselves contain 
any meaning, whereas in mathematics, with a few exceptions such as 
d/dy or (),the meaning of the individual symbols is vital. 

Even more disturbing to the learner is the interrelationship of 
mathematical symbols where not only does each symbol have its own 
distinctive meaning, but this meaning is affected by its neighbouring 
symbols. Consider, for example, the schema attached to the symbol 2 
in 212, 1/2, V2, f(2), a2, a 2, IR2, 2'o-clock, 10012, (2,3), etc. In each case 
there are subtle changes in a basic schema which originally starts as 
a fairly low-level concept in 2 as used in the infant natural number 
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sequence but becomes a higher and higher level schema as mathe­
matics progresses. 

The essential concentration in school curricula on literacy tends to 
produce, therefore, a reading technique which to some extent inter­
feres with the technique required in reading mathematical symbols. If 
one accepts this proposition, then two implications arise: we must adapt 
mathematical symbolism for the learner, and we must follow a careful 
and structured plan to teach the pupil how to read mathematics. 

Figure 1. The arithmogon. 

Signs 
One of the usual ways of adapting mathematical symbols to the 
schema used by pupils is the use of signs such as boxes instead of 
symbols. Many books now in use make extensive use of boxes from 
a very early stage, frequently asking questions such as 3 + D = 7. 
Another interesting example is the arithmogon (Mcintosh & Quadling 
1975). In the arithmogon (Figure 1) the numbers which belong in the 
square boxes are the result of adding the numbers in its adjacent 
circle boxes. Many points of interest arise from the investigation of 
what numbers should be in the circles for given numbers in the 
squares. What is relevant to the present argument is the difference 
in schema attached to this problem compared to its presentation in 
the usual mathematical notation. Whilst many primary children 
could tackle the sign statement of the problem, it is doubtful if many 
early secondary school pupils would be able to manage the symbolic 
statement. 

{

x+y =8 

x+z=ll 

z+y=13 
Comparison of the two expressions 3 + D = 5 and 3 + x = 5 illus­

trates some of this difference between signs and symbols. The first 
uses the sign D to replace the missing number and the second uses x 
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in apparently the same way. The second expression carries with it, 
however, a much more abstract statement which says 'this particular 
example belongs to a whole class of things which can be dealt with 
in such-and-such a way.' In solving the first problem it really is the 
number which should be in the box which is the relevant factor, in the 
second it is the process of obtaining whatever number turns up which 
is relevant. Whilst this appears to be a post-operandi argument and 
to have import only at later stages in the learning of mathematics, 
experience points to the operation of such distinctions at an almost 
instinctive level. Children who cannot be at all aware of this distinc­
tion from experience react so differently to the use of a sign 0 than 
asymbolx. 

Rather surprisingly this distinction in the order of concept involved 
is echoed in adult perception. Coltheart (1972) reports an experiment 
in which observers are presented with a 3 x 4 matrix ofletters or 
shapes. After the display has been removed the observer is asked to 
remember a particular subset of the display chosen on the basis of 
position, colour, shape, or size. In the particular problem investigated 
this showed the existence of a short term memory of greater detail and 
scope than normal recall. What was rather surprising was that this 
short term intensive memory apparently failed to operate as effec­
tively when the display was a mixture of letters and digits and this 
distinction was used as a discriminant. This would suggest that the 
ability to distinguish between letters and digits is in some respect 
different from discrimination in position, size, shape, or colour. This 
might indicate, incidently, another of the great advantages of arabic 
place-value notation based upon position rather than earlier hiero­
glyphic representations which depend upon a higher level of symbol 
discrimination. It would be interesting to repeat the recall experi­
ments with young children to investigate if there is any particular 
age at which the distinction between signs and symbols, as defined 
here, becomes relevant. It seems very likely that the use made in 
mathematics ofletters for numbers is probably neither accidental 
nor irrelevant. 

It is clear that adults do not, indeed, experience much difficulty in 
handling signs in normal everyday life. There has always been an 
immediacy and ease in the use of signs for religious, political, and 
social reasons. Mere reference to scarab-beetles, fish, crosses, eagles, 
hammers and sickles, white feathers, tudor roses, fleur-de-lyse, and so 
on, produce immediate images and attract schemas from our memories 
which are full of vividness. Freud, and modern advertisers, have made 
this fully conscious. 'fraffic signs, laundry signs, and the markings on 
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electronic equipment illustrate the steady growth in the use of signs 
in modern life. The contrast of these signs with mathematical symbols 
illustrates the distinctive features of a sign, which is essentially a 
low level naming concept which identifies a single, identifiable, non­
adaptable idea. Symbols, on the other hand, are identified with high­
level schemas rather than concepts, and as such are more responsive 
to adaptations and multiple relationship. Three different types of 
symbolisation have therefore been identified: 

Language symbols. Contain high redundancy, great interdepen­
dence, and no individual meaning. 

Signs. Contain little redundancy, not interdependent and unaffected 
by neighbouring signs, represent single (naming) concepts. 

Symbols. Contain little redundancy, interdependent and adaptable 
to neighbouring symbolisms, related to schema. 

The Functioning of Symbols 
Skemp (1971) suggests ten different ways in which symbols are used: 
i Communication, ii Recording, iii Forming new concepts, iv Aiding 
multiple classification, v Explanation, vi Aiding reflective mental 
activity, vii Exlpbiting structure, viii Automating routine manipula­
tions, ix Recovering information, and x Producing creative mental 
activity. Not all of these are, of course, independent and more than one 
mode of functioning is often at play at the same time. In Skemp's clear 
descriptions of these roles for symbolisation certain underlying prob­
lems and ideas can be seen. At a high level of mathematics there is a 
clear contradiction between two characteristics of symbolic representa­
tion; the condensation which symbols achieve contrasts with their use 
as a precise language. Both these aspects relate to the early learning 
of mathematics in which symbols are used to name concepts and 
schemas, and yet in different contexts we change and adapt these 
schemas to meet different needs, without always changing the symbol. 
(Perhaps we need vari-focal symbols to complement the idea ofvari­
focal concepts presented in Skemp 1979.) 

Symbols as Names 
Skemp comments 'It is largely by the use of symbols that we achieve 
voluntary control over our thoughts,' and the ability to name a thing 
has always conveyed contr~lling power in both Greek and"Nordic 
mythology. In answer to 'What is the largest number,' the word 'infinity' 
settles all discussion, and the fact that the solutions to x2 

- x + 1 = 0 
are complex satisfies most enquiries even though the hearer may have 
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no clearly defined meaning for the words. Mathematics is usually 
concerned with higher order concepts for which the defining examples 
are other concepts, and these can only be expressed in verbal or sym­
bolic form. Just as the young child must have the certainty of conser­
vation of his physical observations before being able to operate with 
them, so the student of mathematics must be assured of the certainty 
of the lower level concepts before he can build with them. One of the 
major roles of symbols lies in communicating and holding these con­
cepts with others, or with oneself in internal reflection and argument. 
In identifying three types oflistener-the 'don't knows,' the 'want to 
know more,' and the 'critics' - Skemp illustrates the different contexts 
in which schema, and hence symbols, undergo subtle changes. These 
range from naming a general target area in which the concept is al­
lowed to be fuzzy but the direction of clarification is hopefully indicat­
ed, through periods in which some concepts are clarified whilst others 
are left vague, until in the critical stage every symbol has its own spe­
cific and precisely defined meaning. The student not only passes through 
these stages in turn, but passes through them more than once as con­
cepts are continually redefined. This is not only true of high level con­
cepts such as integration, but even early in the secondary school level 
the uses of 7T and v'2 illustrate the variety of conceptual contexts. 
Similarly the continual redefinition of multiplication has led to the 
introduction of the idea of group properties in an attempt to establish 
a conserved concept which is unvarying enough to be built upon. In 
the same way the idea of function compared to relation reflects a need 
to distinguish between two different uses of variables which otherwise 
cause a disturbing vagueness. 

If communication is to be meaningful, it is clear that the symbol 
used to signal a schema in one person must signal the same schema in 
his correspondent. One ofthe problems in the use of symbols by pupils 
is that the teacher has frequently condensed his early use of multiple 
concepts and symbols into a single one. Thus, for example, the develop­
ment of the concept of subtraction involves a variety of different lower 
level concepts such as 'take away,' 'how much bigger,' 'what is the dif­
ference between,' out of which is generated an underlying idea. Until 
the child has developed this underlying concept the use of the same 
symbol for different concepts can cause problems, and it is important 
that the symbolism should mirror the different activities. On occasions 
it is therefore necessary to use two or three symbols (or rather signs) 
in the early stages. (The reader is invited to describe the activities 
symbolised in the following list.) 
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5-3=2 

(5,3~2 

5+0=2 

5~2 

5+-3=2 

~---~~ 5-3=2 

The same tendency for symbols to outreach the attained concept 
can be seen in the use of - 1 and +3 for the directed numbers, and many 
teachers have encountered difficulty which pupils have with notations 
such as ( )-1

• This really denotes a multiplicative inverse, but in situa­
tions such as sin- 1x the connection with any multiplication situat ion 

is far from obvious. Even the equivalence of¥ and 3 ..;.. 7 is not at all 

easy to establish. 

The Introduction of Symbols 
There is an apparent confusion in the work of both Skemp and Dienes 
on the introdttction of the name of a concept (its symbol) early in the 
learning process. 'lb quote from Dienes (1964): 'The most likely reason 
for the general ossification of mathematics in children's minds at an 
early stage is the rash use of symbols, i.e., the introduction and man­
ipulation of symbols before adequate experience has been enjoyed of 
that which is symbolised' and 'the apprehension of structures and the 
symbolisation process are not altogether distinct, and in fact there is 
reason to believe that each acts as a stimulus on the other.' 

Similarly Skemp (1971): 'Making an idea conscious seems to be 
closely connected with associating it with a symbol' and 'Concepts of 
a higher order than those which a person already has cannot be com­
municated to him by definition, but only by arranging for him to 
encounter a suitable collection of examples.' 

Both writers are really talking about symbols as representing 
structures, (central unifying ideas, schemas) as compared to signs 
representing low level concepts. Skemp makes the point that there is 
a distinction between reflecting on content and reflecting on form 
which is relevant in this~ontext, since the level of cont~t is that of 
naming concepts. This distinction clearly relates to Piagees distinction 
between concrete operational and formal operational thinking. The 
usually suggested ages for maturing from one mode to the other (in 
general between about 12 and 16 years of age) would indicate a need 
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to persist with less flexible signs related to content rather than symbols 
related to form. The timing of this change from the particular to the 
abstract is implicit in the good teacher, but there has been little re­
search to make it explicit and therefore more transferrable. (The Con­
cepts in Secondary Mathematics Project reported by Hart [1981] has 
produced some interesting work in this area.) 

The premature introduction of symbols to represent structures leads 
to pupils developing incorrect and inflexible schemas. Once a schema 
is established it tends to be firmly held, and pupils tend to alter their 
perception of contradicting concepts in order to fit them into their 
schema. One difficulty which many secondary pupils have in reading 
problems is that they construe the words so as to fit their firm schema 
rather than accept the intended meaning. This is one of the problems 
with the traditional model example and practice and theorem followed 
by rider methods of teaching mathematics which leads to externally 
imposed schema at too early a stage. This tends to encourage inflexi­
bility and hence later a limited range of application of the schema. 
The method does, however, give those gifted pupils who can accommo­
date and change their schema an appreciation of the structure and a 
language in which to discern the form of mathematics. 

The recent trend towards individualised learning methods, on the 
other hand, do give the pupils a broad base oflow level concepts from 
which schema can be built. They allow the pupil to mark out the terri­
tory of a symbol by using it initially more as a temporary sign for a 
limited content, related to a short piece of work. These methods, 
however, seem to have difficulty in developing symbols relating to 
underlying structures. Because the pupils are using low level signs, 
they are not easily led to consider high level relationships. This ab­
sence ·of a symbolic language in which to recognise higher concepts 
leads the pupil to concentrate on easier low level concepts for which 
the language is available. The broad base of the triangle of mathe­
matical knowledge which these methods create can be dissipated 
unless the pupils are also given the language and encouragement to 
build from this base. 

The changes in content during the 1960's led to a considerable 
increase in the use of symbols; the introduction of set notation, func­
tional notation, vectors, matrices, symbols for inverses, magnitudes, 
and logic. That this plethora of symbols did not cause any real distur­
bance might superficially seem a little surprising. The introduction of 
extra symbolism, however, serves to give the pupil more language in 
which to express and refine his ideas. Many of these new symbols were 
also operating at the level of signs, representing low level concepts 
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-
and distinguishing between ideas which were otherwise confused 
within the same symbol. One of the major problems which did become 
apparent was the insecurity of teachers with this symbolism, and this 
led to a pedantry which was out of step with the initial intentions of 
some reformers but which nevertheless came to be one of the charac­
teristics of the changes. When a symbol is not securely understood, the 
edges of its meaning are avoided. There was a confusion, too, between 
the use of a symbol in the classroom for a single concept and the use of 
the symbol in more developed mathematics for a whole structural 
idea. This was enhanced by the teacher's own enjoyment in having 
mastered something new and wishing to pass onto the pupil immedi­
ately this whole concept of mathematical structure which had often 
escaped him (the teacher) in the past. The halo effect caused by this is 
unfortunately transitory. To mix the metaphors thoroughly, jumping 
from bandwagon to bandwagon can be exhilarating for teacher and 
pupil but is ultimately very tiring! 

Whilst some features of these reforms will gradually disappear, 
some of the notational innovations will continue to prove advan­
tageous. The contrast of the algebra of vectors and matrices with the 
algebra of number serves to help identify the more usual manipula­
tions and encourage an appreciation of their structure. The avail­
ability of a symbol for magnitude can serve usefully to identify this 
particular idea from within more complex concepts (provided that it 
is used when required and not when it is superfluous). The idea of 
placeholders, solution sets, and function have not so far proved 
effective in the crucial problem of dealing with variables. The variety 
of concepts attached to, say, y = 3x + 2 needs a much more varied 
notation in the early stages. The confusion between when x andy are 
specific values (e.g., simultaneous equations) or representational 
values (drawing graphs or expressing a generalisation) or true 
variables (expressing abstract conceptual relationships) is present 
throughout mathematics and only sophisticated schema can really 
distinguish between them and accept their equivalencies. Many 
situations we present to students contain all three meanings at 
different stages within the same problem and the students certainly 
have difficulty and uncertainties· as a result. The teacher, indeed, has 
subsumed these concepts into one schema needing one symbol, and 
since he does not need to differentiate he loses the facility: 

The introduction of the ideas of functions and relations for use in 
different situations was an attempt to clarify this for the pupil, but the 
discrimination is only partly accomplished, and the general tendency 
to adopt only one or the other notation regardless of the problem con-
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cerned led to little overall improvement. More flexibility is certainly 
needed in the early stages of algebra, and less pedantry. Use could 
be made of boxes, circles, triangles, etc., when specific values are 
intended, and pupils should be encouraged to invent symbolism for 
unknown quantities and for representational situations such as 
generalised statements for patterns, e.g., sequences. The pupil's 
recognition of a need is often the best springboard for symbolism, 
and that symbolism must reflect that need. Mathematicians, indeed, 
use a great deal of implicit discriminants, such as using x, y, z for vari­
ables, a, b, c for coefficients, k, l , m for constants, and even using 
Greek letters, 'curly' letters, and so on. These distinctions are not 
readily discernable by the learner nor always conscious in the teacher 
and more distinct symbolisation is needed in the early stages, with 
the more usual conventions being allowed to grow slowly. 

Symbols which Unify and Separate 
One of the recurring problems is the use of a symbol on one hand to 
distinguish between concepts and on the other to unify concepts into 
more useful general schema which ignore irrelevancies. The result is 
that pupils cannot focus on either the woods or the trees. The value of 
symbols in developing simplifying structural schemas is very evident. 
The idea of differentiation as an operator leads to (D 2 + 2D + 1)y = 0 
with an immediate recall of a known schema, and the possibility of ex­
tension to higher order. At a similar level of study the introduction of 
complex numbers in the form rei8 can, and should, be dramatic. Indeed 
the variety of forms of complex numbers is also a good example of the 
use of symbols to distinguish between different facets of the same con­
cept. Similarly at an earlier stage the use of different expressions-
16 = 2 x 8 = 7 + 9 = 42 =52

- 32 = .... . -servetoemphasise 
different features. The expressions 16 = 1 + 15 = 2 + 14 = 3 + 13 = 
.... identify both different partitions and also a common feature. In 
introducing set language the need for a set to be well-defined is usual­
ly stressed, followed very soon by Venn diagrams in which the only 
specification is 'subsets of the Universal set.' Particularise, for exam­
ple, the situations shown in Figure 2. 

Figure2. 
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The use of a 112 is an interesting situation in that it is at the same 
time the 'opposite' or 'inverse' of a 2 and also merely an extension of the 
exponential process a 3 a 2 a 1 

... a 0 .• • . Consider the distinctions and 
similarities of the three statements: 

A. x + y = 7 B. The lines x + y = 7 C. (1 1) fx) ( 7) 
3x + 2y = 15 and 3x + 2y = 15 and 3 2 \y = 15 

their intersection. 
InA ,x andy are specific particular values whilstinB there are two dif­
ferent independent variables and two different dependent variables which 
(since they are in one plane) can take the same values simultaneously 
at the intersection. In C, x andy are characteristics of a single vector 
quantity. For the teacher with a well developed schema of ordered 
pairs there is value in using the same letters in all three situations. 
The pupil is likely to be in a situation similar to the pre-conservation 
era ofPiagetian theory and unable to appreciate the constancies within 
these three examples. They therefore serve merely to confuse until 
'the penny drops.' Unless the appreciation occurs reasonably early in 
the learning process this confusion passes past its initial usefulness 
(in altering the pupils' schemas into more useful ones based on higher 
level categm1sations) into dismay and rejection. 

The linear function f(x) = mx + c (or y = mx + c) is another inter­
esting example. 'Ib the teacher, conscious of many other functions, the 
role ofm and c in determining the behaviour of the function is very 
clear. 'Ib the pupil this is hardly a linear function at all but many differ­
ent functions, since the importance of linearity only arises in contrast 
to many non-linear functions. His concentration is solely on the many 
values of m and c and therefore each function is distinct and individual. 

Nevertheless, without the use of similar notations the crucial 
structural categorisations may remain hidden. What is needed at 
school level are notations in which both similarities and differences 
are evident. At a higher level such notations are normal, for example 
d / dx and ajax, I and~. log and ln x, sin x and sinh x. The need of 
mathematicians for this kind of clued notation has not been reflected 
in our school notations where the need is likely to be much greater. 

Some Tentative Implications 
The attachment of symbbls to structural schemas rather than simple 
concepts would suggest that they come into play only in the latter 
stages of learning mathematics. This is related to the teaching feature 
stressed by Skemp in the use of one sign or symbol for one concept or 
schema of the learner. In the early learning of algebra, symbols are 
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used not only for different concepts but also for different types of 
concept such as particulars (missing numbers), generalisations 
(extensions of pattern), and abstractions (expressions for structure or 
form). These are distinctive elements, which being distinctive need 
distinctive notations. 

There has been a tendency for some years to use non-literal signs such 
as boxes in the early stages of the algebra of unknowns, and the intro­
duction of the term 'placeholder' was indicative of this trend. In the 
early 1960's R. G. Davies made an interesting film of a lesson in which 
one group of children devise a relation between 8. and 0 to produce an 
answer 0 . The other children by specifying trial numbers for 8. and 0 
and being told the resultant 0 try to establish the relation. These 
introductions to algebra have never, however, succeeded in becoming 
more than trends. The arguments in this article suggest a much 
greater extension and development of their use. The introduction of 
literal signs brings with it a greater feeling of permanence, and it is 
essential that this permanence does not a lso produce rigidity, since 
even simple concepts must adapt and change as maturity and sophis­
tication grow. The discussion has led to a plea for a greater range and 
variety of literal symbols in the early stages, which can both serve to 
distinguish and unify. The arbitrary and indiscriminate use of any 
letter in addition to the ubiquitous x does not in itself satisfy both 
these requirements, but a carefully thought-out development in which 
similar situations had similar but distinct notations is needed. One 
common example is the use of bold or italic letters for vectors, points, 
and magnitudes. In establishing the underlying structures of which 
algebra is the manifestation not nearly enough attention has usually 
been paid to the importance of having non-examples available to help 
establish characteristic qualities. In particular, the concentration on 
an analysis oflinear functions in most school syllabuses is attempted 
without sufficient attention to establishing the concept of linear func­
tions. Indeed, the idea of operators and function machines rather than 
more general functions would seem much more pertinent in school 
mathematics, since the pupil has a much greater variety of experience 
upon which to draw. This is also reflected, perhaps, in the complaints 
of teachers of other subjects to whom the higher level idea of a nmc-
tion seems hardly as relevant. They desire the ability to manipulate 
single operators in sequence, whereas the concept of a function is an 
appreciation of the results of combining multiple operations. 

This approach leads to a stress early in the course on topics similar 
to the traditional transformation of formulae but placed in a less 
algebraic setting by the use of diagrams and flow charts; e.g., such 
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Solve: Jx + 2 = 5 
Figure 3. 

II II 

representation as shown in Figure 3. This approach could build upon 
some ofthe work contained in some primary school syllabuses-(see 
Fletcher 1971). This use of operators leads naturally to the use of 
functional notation for combinations of operators at a later school 
stage. In the early stages of studying functions, pedantic mathema­
tical distinctions of notation should not be demanded of the pupils, 
even though the teacher may well choose his own notation for a 
situation in anticipation of more advanced criteria. As the pupils' 
schemas develop so the notation can be refined; all that is necessary 
is the availability of suitable notations when the need for these re­
finements arise. 

It is likelythat we teachers will find it difficult to alter our own 
notational schemas to fit the pupils' needs. Just as teachers deplore 
the inability of their pupils to solve a + bx + cx2 = 0 so we may have 
difficulty in making such simple but useful adaptations as using 
Ax2 + Bx + C = 0 or f(x) = Mx + C. Such a change may seem trivial 
to the teacher who intuitively distinguishes between coefficients and 
variables (unknowns?). The change in size of notations, however, 
suggest such a distinction much more clearly to the pupil. 

The importance of symbolism in mathematics is indisputable, but 
we have little research evidence on the learning of mathematical sym­
bols. There is a great deal of expertise known to experienced teachers. 
Much is accomplished by hand-waving and individual ad-hoc symbols, 
but this needs to be externalised and theorised so as to become avail­
able to the whole community of mathematics teachers and to help 
overcome deficiencies ofboth syllabuses and texts. The lack of teach­
ers with a secure and sound training in mathematics is unlikely to be 
overcome quickly, and without security there is no flexibility. It is 
therefore increasingly u,rgent that advice which rests upon a syste­
matic and realistic theory of learning is made available. 
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